N
L
i
3
t

N

A LA, S

N76-18825
8691

Unclas .
61_. _18¢

61.

e B34

.C8CL 09B

LEVEL 2 MDAS PROTOTYPE

289 p HC $9..25

MONITOR PROGRAM DOCUMENT, -PART .2: {TRW.

(NASA-CR-147453)
iSystems Group) -

!
1
H
L

25990-H025-R0-00

NASA CR:

/AT AT T

TRW NOTE NO. 74-FMT-937

JSC/TRW TASK 531

LEVEL II MDAS PROTOTYPE MONITOR
PROGRAM DOCUMENT
(PART II)

14 June 1974

RECE! .
14 #‘G\u‘ LA
gh ST o
e B
Prepared for cg?\ nxﬁﬁjf

Mission Planning and Analysis Division
National Aeronautics and Space Administration
Johnson Space Center
Houston, Texas

NAS 9-13834

Prepared by
Systems Evaluation Department

25990~H025-R0-00

TRW NOTE NO. 74-FMT-937

JSC/TRW TASK 531

LEVEL II MDAS PROTOTYPE MONITOR
PROGRAM DOCUMENT
(PART II)

14 June 1974

Prepared for

Mission Planning and Analysis Division
Mational-Aeronautics and Space Administration
Johnson Space Center
Houston, Texas

NAS 9-13834

Prepared by
Systems Evaluation Department

{‘.?rzﬁmﬂ

E. L. Eltisor, Jr., Task Manager
JSC/TRW Task 53]

N2

R. K. Petersburg, ifanagen
Systems Evaluation Departhent

ACZQL% é%J%\

R. K. Wright

Assistapt Progect Manager

VMMPS

Mission Trajectory Control Program

Date Delivered

4/30
4/30

5/31
5/31
5/31
-5/31
5/31
4730
4/3C
4/30
5/31
5/31
5/31

5/31
5/31
5/31
5/31
5/31
5/31
5/31
5/31

5/31
4/30
4/30
5/31
5/31
6/14

Table of .Contents

Resident

Monitor Boot Logic
User Communications

3.1
3.2
3.3
3.4
3.5
3.6

-3.7

3.8
3.9

MDBCDI
MDBCI2
MDCDAT
MDCONY
MDPCK

MDPRMH
MDPRMI
MDPRMR
MDPRMT

3.70 MDSCAN
3.11 MDSQZB

Storage Monitor

4.1
4,2
4,3
4.4
4.5
4.6
4.7
4,8

Fxecution Controller

5.1
5.2
5.3
5.4
5.5
5.6

MDELET
MDENTR
MDFIND
MDGET

MDPACK
MDPUT

MDRADI
MDROLL

MDALOC
MDCMTG
MDCHMTY
MDMERG
MDPRT

MDSMON

Page

1.1-1
2,1-1

3.1-1
3.2-1
3.3-1
3.4-1
3.5-1
3.6-1
3.7-1

3.8-1

3.9-1
3.10-1
3.11-1

4.1-1
4,21
4.3-1
4,4-1
4.5-1
4.6-1
4,7-1
4.8-1

5.1-1
5.2-1
5.3-1
5.4-1
5.5-1
5.6-1

Date Delivered

4/30
4/30
4/30
4/30
4/30

5/31
5/31
5/31
5/31
5/31
5/31
5/31
5/31

5/31
5/31
5/31
5/31
5/31
4/30
4/30
4/30
4730
5/31
5/31
4/30
5/31
4/30
6/14
6/14
6/14

Table of Contents (Continued)

Command Table Editor
6.
6,
6.
6.
6.
Control Table Editor
7.

1 MDCMNT
2 MDEMT

3 MDCMTL
4 MDCMTS
5 MDVCMD

1 MDALST

7.2 MDCNT
'7.3 MDCNTE
7.4 MDCNTS

7.
7.
7.
7. |
Utility Routica
8.
8.
8.
8.
8.
8.
.7 MDLSTI
.8 MDLSTO
.9 MDLSTR
.10 MDPUTC
.11 MDQUIT
. 12 MDSMTHW
.13 MDSPLT
.14 MDTOC

.15 MDUTIL
.16 SEARCH
.17 SORT?

o

0O 00 O GO o 00 00 O o

5 MDCONT
6 MDDEFN
7 MDEDIT
8 MDSPEC

1 MDALCT
2 MDCTPK
3 MDGETC
4 MDLIST
5 MDLKUP
6 MDLSTH

Page

6.1-1
6,2-1
6.3-1
6.4-1
6.5-1

7.1-1
7.2-1
7.3-1
7.4-1
7.5-1
7.6-1
7.7-1
7.8-1

8.1-1
8.2-1
8.3-1
8.4-1
8.5-1
8.6-1
8.7-1
8.8-1
8,9-1
8.10-1
8.11-1
8.12-1
8.13-1
8.14-1
8.15-1
8.16-1
8.17-1

Date Delivered

5/31
4/30
5/31
5/31

5/31

5/31
6/14

5/31
6/14

Table of Contents (Continued)

9. Library Maintenance
9.1 DCTMOD
9.2 MDADDR
9.3 MDBULD
9.4 MDGENR

10. IMS Interface
10.1 MDIMS

11. -Access Control
11.1 MDLOGO
11.2 MDELAC

Appendix A - Cross Reference

Appendix B - Common Blocks

Page

9.1-1
9.2-1
9.3-1
9.4-1

10.1-1

11.1-1
11.2-1

A-1
B-1

LEVEL IT MDAS PROTQTYPE MONITOR
PROGRAM DOCUMENT
(PART II)

1. Introduction

The purpose of this document is to provide detailed information about
each subroutine contained in the monitor. This information is provided at
a level such that programmers may become familiar with the design and
techniques used to impilement each component described in Part I of this
document. However, flow charts are not provided for the extremely simple
routines. This document is not intended to describe the user interface and
should not be used as such. For this type of information see the "User's
Guide for the Level II Mission Design and Analysis Subsystem (MDAS) Prototype”

In order to facilitate the reading of the flow charts contained herein
the following convention was adopted for off page connectors. Each connector
will contain a lTetter and a number, separated by a slash. The letter
uniquely determines a destination and the nuﬁber(s) reférs to the page of
the flow chart where the referenced connector is located or -from where this

connector is referenced. For example, ... would indicate
 the program flow is continued at connector A on page 2 of the flow chart.
On page 2 we might find ... which indicates that this
portion of the routine may be entered from either page 1 or page 3 of the
flow.

This document describes the routines contained in the baseline program
as delivered to JSC/MAB on 28 December 1973 on the CSC INFONET system.

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

MDAS Resident

The resident is the only program logic which is continuously present in
memory during an MDAS session. It contains minimal Togic to Toad and execute,
and if required, scan the required processors and reload and return control
to the submonitor.

Processing

Inputs All communications with the resident are via the intramonitor
communications area. There are three classes of information used for pro-
cessor loading 1) the library catalog, 2) processor calling sequence data,
and 3) scan control values, all of which are described in Appendix C.

In addition to these inputs, the resident accesses the Tibrary files (Part I,
Section 6) and reads the contents into the processor swap area as required.

Method The resident invokes the INFONET basic file services package LRS
(Logical Rgcord_Services) which is system resident and thus external to the
MDAS region to perform all input/output functions. A major portion of the
resident code is directed toward manipulating the LRS file control blocks
(UCB's, unsanctioned control blocks, and OCB's, operafions control blocks).
A1l communications with LRS is via these control blocks which must contain
such parameters as file name and version, record length, .buffer origin and
length, access codes, file organization keys, etc.

The resident uses the catalog entrv number_to access the file name/version
and origin and length data for the processor to be executed. This information
is stored in the LRS control blocks, the file opened, and the input of the
instruction bank (record) of the procéssor started. While the record is
being loaded by LRS, the resident constructs the processor calling sequence if
any. (The submonitor, loaded in a similar fashion, has no calling sequence).

Tne absotute addresses of the calling arguments are computed by adding
the origin address of BLANK COMMON to the relative common address of the argu-
ments as returned by the submonitor. A transfer instruction to the post pro-
cessor execution logic is placed after the Jast argument address since this
is the point of return following processor execution.

1.1-1

After the instruction bank input is complete, the data bank (record) is
toaded and control is transferred to the processor. This sequence is repeated,
alternating between processor Toading and submonitor loading unless the sub-
monitor indicates that a parametric scan of processor inputs is to be performed.

Scans are performed with a single processor loading as follows:

1) The processor inputs will have been defined by the submonitor such
that the scan centroid point will be evaluated on the initial
execution. The associated data box file will also have been opened
and identification records output to it.

2) The resident will copy the complete summary table (name, units, and
surmary vectors) to the data box file. Adjustment of the input
parameters to the (XI’ Y1) point will then be accomplished and the
processor re-executed.

3) Each subsequent_return from the processor will be followed by
copying the summary vector to the data box file and the scan
parameters incremented such that the sequence (Xz, Y]), (X3, Y1) . ..
(Xn, Y]), (X], Yz) ... (xn, Ym) is completed.

4) In order that all output quantities of the processor will be left
with values corresponding to the centroid point, the resident
deactivates the scan, closes the data box file, resets the scan
parameters to the centroid values, and executes the processor a
final time.

Normal MDAS fermination is accomplished by the transfer of control to the
system directly from the submonitor.

Qutputs Aside from fatal error messages the only outputs from the resi-
dent are the summary table contents of data box files and the deactivating of
the scan activation flag.

1.1-2

USAGE

THE MDAS RESIDENT S ENTERED FROM THE BOOT LOGIC By THE FOLLOWING
SEQUQUENCE OF ASSEMBLY LANGUAGE OPERATIONS
STORE ASCI! NAME OF FUNCTION TO BE LOADED IN PRONAM

LOAD

REGISTER Bl1p WITH PROTAB OFF SET MINUS QNE OF THE

FUNCTION I~BANK LENGTH AND aDDRESS WORp

JUMP

TO LABEL INTIIN IN THE RESIDENT

EXTERNAL REFERENCES
ECLOSS TO 'CLOSE FILES
ECTSOS TO OUTPUT TO TERMINAL
ELRSRS T0O READ LOGIcaAL RECORDS
ELRSWS 7O WRITE LOG[CcAL RECORDS
EOPENS TO OPEN FILES
EROOLS TO TERMINATE EXECUTION
EWAITS TO WAIT FOR ASYNCHRONUS READ COMPLETION
MDADDR FOR LIBRARY MAINTENANCE
MDSMON TO PERFORM MONITOR FUNCTIONS
SUBSYSTEM PROCESSORS AS REQUESTED BY USER

DIAGNOSTICS
D 8 WRITE ERROR, ID IN A}

PROC

THE CURRENTLY ACTIVE DATA pOX FILE CAN NOT BE COMPLETED
BY WRITING OF SUMMARY VECTQRe THE SYSTEM RETURN CODE 1S
CONTAINED IN REGISTER Al.

READ ERROR, 1D 1IN Al :

THE REGUESTED PROCESSOR LOAD MODULE FILE CAN NOT BE
READe THE SYSTEM RETURN CODE 1S CONTAINED IN REGISTER
Ale

EXTERNAL STORAGE)
THE LOAD MODULE FILES OF THE SUBMONITOR DESIGNATED PROCESSORS

AND THE SUBMONIYOR ARE ACCESSED FOR READ AND CLOSED,

THE DATA BOX FILES OPENED AND INITIALIZED BY THE SURMONITOR

ARE COMPLETED AND CLOSED.

BLANK COMMON

VARB

ARGADD
CENTX
CENTY
Daocs
DRUCS
DBSVYLN
INITX
INITY
NUMARG

N2X
N2Y

PRONAM
PRONUM

PROTAB
SCANF

I

{

I

i

1

I

, REPRODUCIBILITY OF THE
1/0 ORIGINAL PAGE IS POOR
I
i
1
1
I
i

1.1-3

YARS

XINC
YINC
WORKX
WORKY

LOCAL COMMON
NONE

120

1/90
1,0

1.1-4

Enter from
baot logic

f

Initialize access
method control
blocks for pro-
cessor loading

l..._4.__....-.-----------‘--—- B/2

Open file and

initiate input
of processor
instruction
bank

Initialize setup of
calling sequence

A
argument add-
resses set?

Insert “jump" to logic
continuation after last
argurient and finalize
call preparations

|

|

|

|

I

I

I

I

I

I

I

|

| gt e |
I for next argument
| | ‘
|

|

|

|

l

I

I

|

|

I

|

I

|

L.

Yes

- Store computed
address in . c/2
caliing sequence

HWait for input
to compleie

Prepare diagnostic
for data box out-
put message

Print error
message

Modify control
blocks for data
bank input -

Yes

FE;;;;;;-;;;;;;;;:-] tio

— and perform all L @ ;ﬂgg:
| scen functions | .
L -

Input processor
data bank and
close file

Resident Flow Diagram Page 1 of 2

REPRODUCIBILITY OF THE
ORIGINAIL, PAGE IS PGOR

A2

]

Cal] designated
processor with
constructed call-
ing sequence

B/1

Returning
from submoniter
?

Compute index
from catalog
entry number

Parametiric
scan activated
2

Injtialize index
for submonitor
Toading

Initial Ho

execution of

this scan?

Yes

Locate summary

table

[

Initialize access
method control
blocks for summary
table output

OQutput name
vector

units

Output
vector

1

increment to
summary vector

1

Increment teo

Setup cycle control
and set values to
init1al Y scan point

units vector

|

|

Ho

Qutput summary
vyector

X
scan cycle
complete

7

Y x

scan cycle

camplate
?

Yes

Close data box

"Peactivate scan
and reset para-
meters to centroid
point

Set value of
initial X

Increment Y
scan parameter

scan point

[| Increment X .

Resident Flow Diagram Page 2 of 2

1.1-6

scan parameter

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Boot Logic (MDAS)

The purpose of the boot 1ogic‘(entry point MDAS) is to perform sufficient,
one time initialization to bring the subsystem up for a user session. The
basic tasks involved are the input of the]ibrary catalog from mass storage
into the intramonitor-communications area and the initializing of the resi-
dent/submonitor communications 1link such that transfer of control to the
resident will cause it to load and execute the appropriate monitor function,

Processing

Inputs The only input to the boot logic is the library catalog which resides
in mass storage file MDTABL.MD. This catalog and its associated header record
are loaded into the intramonitor communications-area (see Appendix C for
Tocations).

Method The boot logic invokes the INFONET basic file services package
LRS (Logical Record Services) which is system resident and thus external to
the MDAS region to perform all input/output functions. A major portion of
the code js directed toward manipulating the-LRS file control blocks (UCB's,
unsanctioned control blocks, and OCB's, operations control blocks). A1l
‘communications with LRS is via these control blocks which must contain such
parameters as file name and version, record length, buffer origin and length,
access codes, fTile organization keys, etc.

The catalog file is opened and the three word header record input.
These words contain size and pointer data to the remaining portions of the
catalog. (Table 2-1 depicts the general structure, content and definitions
of the catalog file MDTABL.MD.). From the header information the total
space required for reading the catalog into memory is computed and tested
against the size available.

The catalog used on the previous MDAS execution, referred to as the old
catalog record, is input followed by any new processor entries into the
catalog generated by the maintenance program MDGENR. As indicated in
Appendix C, the remaining portion of the intramonitor communications area
is reserved for an ephemeris data buffer and the storage monitor table (SMT}) ;-

2.1-1

http:MDTABL.MD
http:MDTABL.MD

thus the boot logic sets the origin of the buffer to the next available
address following the catalog and the origin of the SMT following the fixed
length buffer.

After the catalog input and associated allocations are accomplished, the
boot Togic primes the communications 1ink to the resident to cause loading
of the appropriate monitor function. There are three possibilities.

If no changes have been made to the Tibrary and catalog the submonitor
_ (MDSMON) will be queued for loading. The necessary control block data is
found in words two and three of the first catalog entry.

If MDGENR has modified the library and catalog the maintenance processor
(MDADDR) must be Toaded to reorganize the catalog and build or modify the
default control tables for the affected processors. The necessary control
block data is found in words four and five of the first catalog entry pro-
vided that MDADDR itself has not been modified.

The third possiﬁi]ity for monitor function loading is the invoking of
a new version -of MDADDR. This is detected by the presence of a non-zero
value in the third word of the catalog header record. In such cases this
value is the record number of the new catalog entry record corresponding to
the revised MDADDR. To queue this function the associated control block data
in words two and three of the new entry are referenced.

Before transferring control to the resident, the adequacy of the swap
area region sizes is verified to insure proper loading of the queued
function by the resident.

Outputs The appropriate portions of the intramonitor communications
area are initialized as described and a monitor function is queued for Toading
by the resident. Several diagnostics related to detection of fatal errors
may be output by the boot Togic.

2.1-2

USAGE

ENTRY HMDAS

EXECUTE THE GPS COMMAND !MDAS

EXTERNAL REFERENCES

HMDAS RESIDENT

D.IAGNOSTICS

CATALOG S1ZE ssaes TO LARGE FOR PROTAB ssace
THE MDAS LIRRARY CATALOG FILE WILL NOT FIT IN THE
INTRAMONITOR COoMMUNICATIONS AREA- AS PRESENTLY
CONFIGUREDs EBRIT MDAS«PNC TO REVISE THE VALUE OF CRES
APPROPRILATELY AND REASSEMBLE AND LINK HMDAS.

EXTENT OF oseese (soaverscasy) IS TOO LARGE FOR CURRENT MDAS

CONFIGURATION (sasvesronaele
THE INDICATED LOAD MODULE (MDSHMON OGR MpADDR) REQUIRES
A SWAP AREA LARGER THAN THE ALLOCATED REGIONS»
DETERMINE THE REQUIREMENTS, EDIT MDAS=PN¢c TO REYVISE THE
VALUES OF [RES AND DRES APPROPRIATELY AND REASSEMBLE AND
LINK MDaAS,

INIT READ ERRORy ID IN Al
THE gO0OT 'LOGIC WAS UNABLE TO READ THE LIBRARY CaATALQG
FILE MDTABL4MD, THE SYSTEM RETURN CODE 1S CONTAINED N

REGISTER Al

EXTERNAL STORAGE

THE LIBRARY CATALOG FILE MDTABL.MD IS OPENED, ACCESSED FOR
READ AND CcLOSED.

BLANK COMMON

IN ADDITION TO THE FOLLOWING VARIABLES, THE BOOT .LOGIC ITSELF
IS CONTAINED IN BLANK COMMON. 1T CAUSES 1Ts OWN DESTRUCTION

TO OCCURE WHEN THE FIRST LOAD OF THE MONITOR IS ACCOHPL!SHED

BY THE RESIDENT.

VARB 1,0

DBSTRT
EPHLEN
EPSTRY
FIXCOM
NTRY

PRONAM
PROTAB
PTABKY

0O OO wm O~ O

LOCAL COMHON

NONE

2.1-3

http:MDTABL.MD
http:MDTABL.MD

¥

Enter MDAS
boot logic

Y

Initialize access

method control
blocks

Convert size
parameters to
ASCIT for diag-
nostic print

Print arror
message

Open library
catalon file
and input
header record

Enough
space in communica-
tions area for
catalog?

An_y I[3]

old entries
?

Yes

Compute Tength of old
entries record and
adjust control blocks

accordingly

Input old
cataleyg record

Adjust control
blocks for new
gntry records

input

No

entry record

Input next new

l

ATl Yes

new records
in?

Close catalog
file

Yes

Print error
message

Compute origin of
epheireris buffer

to follow catalog
in communications
area, origin of SMT
to follow buffer
and resulting SMT

Tength

%DAS Boot Logic Flow Diagram (Catalog Input Function) Page 1 of 2

2.1-4

REPRODUCIBILITY OF THE
ORIGINAL PAGE-IS POOR

Any tio
new entries in

catalog?

HNo llew version
of maintenance

processor?

] ¥y

Set pointer Determine position Set pointer to

ta MPADDR of new MDADDR entry submonitor

cataleg entry in catalog and set (FDSMON) cataleg
pointer entry

Swap
area region
sizes adequate
for Toad?

Transfer to
resident

Convert region size
paramsters to ASCII
for diagnestic print

Print error
message

(Stop '

HDAS Boot Logic Flow Diagram (Resident Priming) Page 2 of 2

2.1-5

Number of
old entries

Humber of
new entries

Entry # of

new MDADDR

|

Header Record

Submonitor I-bank Tength D-Lank length HDADGR I-bank HDADDR D-bank
name (MDSMON} and origin and origin length % origin | length & origin
Processor Processor Processor Frocessor Processor
names 11 I-bank lengths D-bank lengths § default control revision
alphabetical and origins and origins table and argu- number
order ment definition
file lengths
WMM—N‘—T ‘-—"“‘-_-

01d Catalog Record

New processor

I-bank lenath

" D-bank length

name and origin and origin ﬂ
MDADDR I-bank length D-bank length
and origin and origin
¢eo®

Hew processor
name

I-bank Tength
and origin

D-bank length
and origin

New Catalog Entrvy Records

Table 2-1 Organization of the Library Catalog File MDTABL.MD

2.1-6

REPRODUGIBEITY OF THE

ORIGINAL PAGE

1S POOR

http:MDTABL.MD

MDBCDI - User Communication

MDBCDI converts a BCD number to a binary integer and entry point MDIBGD
converts a binary integer to a BCD number,

Method

Input: The inputs to MDBCDI are BCD numbers, one character per word to
be converted, and the number of characters to convert. The inputs to entry
point MDIBCD are the binary integer and the number of words available in the
output array.

Processing: Routine MDBCDI converts BCD numbers to a bhinary integer.
The BCD characters are input one character per word, MDSQZB is called ta
remove blanks from input string. MDBCDI checks each word for a digit (0 - 9).
If the word does not contain a digit, an error flag is set to the negative
of the subscript word number in error and the routine veturns. The input
number of words, i.e., BCD numbers, in the input array aré converted to a
binary output integer and the routine returns. MDBCDI perfoyrms the same
function as MDBCD2 except MDBCDZ2 does not allow intervening blanks in the
input character string,

Entry point MDIBCD converts a binary integer to a BCD number which is
returned one character per word in the output array. The number of words
left unfilled is output or if the number of digits exceed the available
words, the negative of that number is output.

Qutput: The output from MDBCDI are the binary integer and an error flag
if a digit or blank was not input in the BCD array. The outputs- from MDIBCD
are BCD numbers one character per word and the number of unfilled words or
the negative of the extra words needed.

3.1=1

USAGE

ENTRT HDBCD1

CALL MDBCDI (NCOLLINT,N)

ARGMT 1,0 TyPE DIM

NCOL | S
INT o !
N 1,0 1

ENTRY MDIBCD

CALL MDiBCD (NCOL.INTfN)

ARGMT 1,0 TYyPE pIn

NCOL 0 T
INT 1 1
N /0 1

EXTERNAL REFERENCES
MDSGQZEB

RESTRICTIONS

N

!
i

DEFINITION

ARRAY CoNTAINING BCD NUMBERg

ONE CHARACTER PER WQRD

BIMARY INTEGER

NUMReR oF B¢D WORpS NPUT

IF Ao NON=DIGIT Was InpUT IN aRRAY
NCOL, On OUTPUYT N Wiy BE A NEGATIVE
VALUE WiTH THE MAGNITUDE BE(NG THE
SUBSCRIPT OF THE INCORRECT wORD

DEFINITION

ARRAY CONTAINING BRCD NUMBERe

ONE CHARACTER PER WORD

BINARY [NTEGER.

NUMBER oF WORDS AvVAlLaABLE Iw NCOL

ON OUTPUT IT IS THE NUMBER aF :
UNFILLEp WORDS OR THE NEGAT:VE OF THE
NUMBER oF EXTRA WQoRpS NEEDEn IF NCOLU

IS OVERFLOWED

1¢ INPUT gCD ARRAY MUST CONTAIN ONLY.DIGITS OR BLANKS
2, .OUTPUT BCD ARRAY MUST BE LARGE ENCUGH TO CONTAIN BCD

NUMBERS

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE '

B ANK COMMON
NONE

LOCAL COMMON
NONE

3.1-2

‘ MDBCDI ,

¥

/. Mpsqze N\
Remove blanks
from BCD words

1

Initialize output
binary number to zero

Y
Initialize index into
input BCD number array

i

Initialize index into array
containing Hollerith digits

Is
the BCD
number equal to
the Hollerith
digit
7

YT

Increment index into
.array contaiming
Hollerith digits

Have all .
Hollerith digits
been q?ecked

* input number of BCD numbers

Set error flag {set the

to the negative values with
a magnitude being the sub-
script of the incorrect word)

y

Multiply the integer binary
number by 10, add the digit
and store as the new integer
binary number

Increment index into
BCD number array

l

Have
al! the BCD
numbers been
chegked

Yes

RETURN

i

‘ . RETURNH '

MOBCDI Fiow Diagram

313 REPRODUCIRILITY OF THE

ORIGINAL PAGE I8 POOR

(momep)

¥

Extract each digit beginning
with the least significant
to the most significant

1

Place the corresponding
Hollerith value of each digit
in the output array from the
-last position to the first

~ . Do more to
digits exist than

BCD words

Output the negative
value of the extra
words needed

Y

‘ RETURN ’

- MDIBCD Flow Diagram

3.1-4

MDBCI2 - User Communication

MDBCI2 converts a BCD number to a binary integer

Method

Input: The inputs. to MDBCIZ are BCD numbers one character per word to
be converted and the number of characters to convert

Processing: BCD characters are input one character per word. MDBCI2
checks each word for a digit (0 - 9). If the word does not contain a digi.,
an error flag is set to the negative of the index to the word in error
and the routine returns. The input number of words, i.e., BCD numbers in
the input array, are converted to a binary output integer and the routine
returns. MDBCI2 performs the same function as MDBCDI except MDBCDI allows
intervening blanks in the input BCD character string.

Qutput:” The outputs from MDBCIZ are the binary integer and an error
flag if.a non-digit was-input in the BCD array.

3.2-1

USAGE

ENTRY HDBCIZ
cALL MDBCI2 (NCOL INT Ny

ARGHMT 1,0 TYPE DIM DEFINITION

NCOL I 1 N ARRAY CONTAINING BCO NUMBERg
ONE CHARACTER PER WORD

INT o 1 1 BINARY INTEGER

N 1,0 1 1 NUMBER qoF BCD WORDS INPUT

IF A NON=DIGIT WAS INPUT IN ARRAY
NCOL, On OUTPUT N WiLL BE A NEGATIVE
VALUE W1TH THE MAGNITUDE BE:NG THE
sUgs¢cRIpT OF THE INCORRECT «ORD

EXTERNAL REFERENCES
NONE

RESTRICTIONS
I« INPUT BCD ARRAY MUST CONTAIN ONLY DIGITS ({0=9)s

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

LOCAL CcOMMON
NONE

3.2-2

MDBCIZ

Initialize output binary
number to zero

#

Initialize
BCD number

index into input
array

Y

Initialize
containing

index into array

Hollerith digits

=~ 1Isg
the BCD
number equal to
the Hollerith
digit
?

Increment index
into array -con- -
taining Hollerith
digits i

Have all
Hollerith digits

been %hecked

No

Yes

Multiply the integer binary

number by 10 and add the digit

and store as the new integer
binary number

{

Increment index into
BCD number array

Have
all the BCD
numbers been

Set error flag (set the
input number of BCD numbers
to the negative value with

a magnitude being the sub-
script of the incorrect word

checked
7

Yes

RETURN

* RETURN

MPBCI2 Flow Diagram

3.2-3

REPRODUCIBLITY OF THE

fiﬁlﬁiﬂliﬁ’PEdEE 1S POOR

MDCDAT -~ User Communications

The purpose of MDCDAT is to interpret free field card input for input
data to the right of an equal sign.

Method

Input: Input to MDCDAT is through the calling seauence. It consists
of a buffer containing the user’s response, the pointer to the character from
where processing is to begin, the number of characters in the buffer, and
the column number where the prompt ended.

Processing: MODCDAT processes data on the right side of an equal sign.
Integer, real, double precision, Hollerith or .octal data may be input. Values
that consist only of digits and prefix algebraic signs will be interpreted as
integer data. MDBCDI will be called to convert the BCD number to binary
integer before the value is stored in the output buffer. HNumerical values
will be interpreted as real (single precision) data if they contain a decimal
point (.), an imbedded algebraic sign and/or the letter E. The presence of
an imbedded Tetter D in a numerical value denotes a double precision value.
Both single and double precision values will be processed with regards for
underflow and overflow. Octal values are composed of the digits 0 - 7
(maximum of 12 characters) prefixed by the letter 0. MDS0ZB will be called to
remove blank character words before the octal characters are packed into one
computer word. Positive (+) and negative (-) signs will be processed for
numeric values and exponents. For each numeric type, the field designator
(see Appendix D), entry length and data will be stored in the output buffer.

Most other characters will be interpreted as Hollerith data. ATl data
enclosed by apostrophes, or by a leading apostrophe and column 73, will be
processed as Hollerith data. This data will be packed for output via calls
to MDPCK, and thus will be left justified containing six characters per word
with blank fi11. The number of characters stored will be determined by the
number of columns between the delimiting apostrophes or, in the absence of
apostrophes, by the number of columns in the string beginning with the first
non-blank common and ending with the last non-blank column (imbedded blanks
are retained).)

3.3~1

Special characters $ and % are recognized by MDCDAT and will have the
appropriate field designator set in the output buffer. A comma (,) is rec-
ognized as a field separator while an asterisk (*) and a backslash (\) are
recognized as the end of statement. A left parenthesis ({) is recognized as the
the start of a subscript. Subscripts may contain alpha or numeric characters
The "$LAST" feature is processed by MDCDAT; however, it is a design feature
only and will not be used operationally.

MDCDAT makes numerous error checks, and outputs error messages when an
error is encountered. An up arrow (+) will point to the character in error.
Listed below are examples illustrating typical data forms:

e INT =123 * {Integer)

o RVAL = 1.23E1, 45E-01 * (Real)

¢ DVAL = 1.23D1, 45D-01 * '(Double Precision)
e BIT = 01234567 =* (Octal)

e X(1) =1.2, (2) 3.4 * (Subscript)

e ABC=3R123 * (Repeat)

. HD = 'HOLLERITH DATA' (BCD String)

Qutput: The output from MCDATA consists of error messages, an output
buffer containing field designators and related data, a pointer to the end
of this buffer, and a flag indicating the status of its processing.

3.3-2

 UsAGE
— _ENIRY HMDRCDAT : e -
CALL MDCDAT ([coM,1,NEND, 1LENP.KRBF,J,STATI)

ARGMT 1/90 TYyPE DIM - DEFINITION
ICOM i 1 VARB rNPUT BuFFER CONTAINING NUMERIC
. _— - VALUES 10 _BE CONVERTED -AND._PACKED . . ___
H f P 1 STARTING CHARACTER LOCATION OF DATA
~e—e— - GMEND_ 1 1 1. NUMBER. gF. CHARACTERS.-IN-JCOM...._ __ _.__.
ILENP -1 l t NUMBER oF CHARACTERS IN PROMPT
.KRBF A Lo L. YARB __ouTPUY. gUFFER . . e e e
J 1 ! 1 POINTS TO THE END OF KRBF
. - ----STAT.._0Q0 _F . L. STATUS .pLAG. FOR- MpCDAT PROCESSING.
O=NORMAL RETURN
e — — . wee——— . __NEGmERRQR _ ... ___
——— EXTERNAL_REFERENCES_ ___ __ O
) MDBCD1I .
—— e MRPCK . S —
MDSQZB . :
DIAGNOSTICS

_DIGITS IN AN QCTAL VALUE. MAXTMUM. OF 12 ALLOWED . . _ R
NUMBER OF D1GITS FOR THE OCTAL VALUVE EXCEEDED 12
ILLEGAL USE_OF CHARACTER o IN_OR AFTER. COLUMN_aes. ...
THE CHARACTER NAMED WAS USEpR (LLEGALLY IN OR AFTER
— — THE COLUMN.NUMBER DESIGNATED .— . e

- . EXTERNAL STORAGE | —_ S
NONE

BLANK COMHON

NONE

LOCAL COMMON

NONE

REPRODUGIBILITY QF THE
ORIGINAL PAGE I3 PCOR

3.3-3

' HMCDAT ’

Get next
character

¥

Is
character

blank
?

is
character equal
to II’II

Yes

B/1

Is
character equal
170 (L1
o

Yes

character equal
to "W
?

Was
this the

last character
processed
i d

L

Set field designator

to end of statement
in output buffer

Y

‘ RETURN ’

MDCDAT Flow Diagram

3.3-4

Initialize pointers

| and flags

Set field designator

ito asterisk found in]
output buffer

Set field deéignator
to backslash found in{
output buffer

Page 1 of 9

Begin scan of field character by character

Last

character

currently being

procassed
?

Is
character a BCD
integq;, 6-9

Ho

Get next
character

Character
match,found

Yes @
¥
\ Y | Yy | ¥
Character = Character = Character = Character = Character = Character =
blank R E D 0 s Nor ¥
] 1 | Y !
Character = Character = Character = Character = Charagter =
+ - ;
| u | l
Set flag for Set flag
negative for .

REPRODUCIBILITY op g
DRIGINAL PAGE 38 Poon
Page 2 of 9

MDCDAT Flow Diagram {Continued)

3.3-5

*R" found-check for repeat group

Is this

the-first character in
scan, an argument name or

an octq} field

Ho
Call MDBCDI to convert
BCD to binary integer

)

Set-field designator for

repeat group and store
data into output buffer

Page 3 of 9
MDCDAT Flow Diagram {Continued)

3.3-6

UEY Found-real "D" found-double precision

Is
this the first
character in the scan,
an argument name or an
octa1?fie1d

'IIII' No
)

Set field designator
for real

Is
this the first
character in the scan,
an argument name or an

octa]qfie]d

Set field designator,
for double precision

]

Get exponent sign and
pick up exponent

s
there an error in
exponeqﬁ input

Call MDBCDI to convert BCD
characters to binary integer

Y

Process exponent accounting for
underflow and overflaw, Set
field designator and store data
in output buffer

Page 4 of 9
MDCDAT Flow Diagram {Continued)

3.3-7

E.——

"0" - octal

b

Error message
Yes - “DIGITS IN AN
OCTAL VALUE,
MAXTHUM .. ."

.No ()h-‘\ﬁﬂ\'
Y

<::Ca11 HDSAZB to move:>> Set error flag

Are

there more than
digits
?

btanks out of value

Is -the next No é
character a legal

separator
?

Yes ‘ l'l!!'
Set field designator Error message
to octal and store "ILLEGAL USE OF ..."

data into output buffer

HDCDAT Flow Diagram {Continued) Page 5 of 9

3.3-8

" found

Is a |
Hollerith being
procsssed

| §

Call MDBLCDI to
convert the BCD
subscript to
integer

No .
Process subscript

Valid
subscript
?

Yes

Is
this an "$LAST"
subscript
3

Mo

Print up arrow
under character
in error

Process
"RLAST"
subscript

Y

Set field designator
and store data for
subscript

HDCDAT Flow Diagram (Continued)

3.3-9

REPRODUCIBILITY OF THE
CORTCHUNAL PAGE IS PCOR

Page 6 of 9

Is.
next character,
a |!$“ (or JI%H)
T

Yes

tlo

Process symbols

Set field designator

for "$" or "% in
output buffer

—

¥

Set field
to name

designator

| §

Call MDSOZB and
MBPCK to remove
blanks and pack
data

Store data in
output buffep

MDCDAT Flow Diagram (Continued)

3.3-10

Page 7 of 9

0/2

-—-—-1 "'" found

1

Pick up BCD
characters
between
apostrophes

Were there
characters between
apostrophes

?

€all HMDPCK to
pack characters

Y

Store field designator
and data in output buffer

MDCDAT Flow Diagram (Continued)

3.3-11

Page 8 of 9

Last character processed

Hollerith
being processed
?

. HWas |

period being-

" processed
?

. Octal
being processed
?

Call MDBCDI to con-
© vert BCD to integer

¥

Set field designator
to integer and store
data in output buffer

R p 9 of
MDCDAT Flow Diagram (Continued) age 9 of 9

3.3-12

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

MDCONY - User Communications

MDCONV coﬁverts a BCD character string to an ASCII character string.

Method

Input: The inputs to MDCONV are the BCD buffer, the number of characters
in that buffer to be converted, and the position in the output buffer to begin
to place the converted characters.,

Processing: MDCONV determines the starting bit of the output buffer to store
the ASCII character and initializes the starting bit of the BCD buffer to zero.
For each character to be converted, MDCONV determines the word number of the
character in the BCD buffer and the word number to place the converted charac-
ter in the ASCII buffer. An index into an array containing ASCII code is com-
puted by extracting six bits from the BCD buffer starting at the specified
bit. The nine bit ASCII character is placed in the ASCII buffer. The hit
location of ASCII is incremented by 9 and the bit location of the BCD buffer
s incremented by 6. After all characters have been_convertéd, MDCONV returns.

Output: The output from MDCONV is a buffer containing the ASCII charac-
ters. . This buffer is not affected other than the ASCII character string has
been inserted.

3.4-1

USAGE

ENTRY MDCONYV.

CALL MDCONY (N,BCDBUF,ICHAR ,ASCRUF}

ARGMT 170 TyPE DIM

N I !
BCOBUF I 1
ICHAR 1 1
ASCBVUF O 1

EXTERNAL REFERENCES
NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

LOCAL COMMON
NONE

1
YARS
!

VARB

DEFINITION

NUMBER pFf CHARACTERS TO BE ~ONVERTED
gUFFER CONTAINING THE BCD CuARACTERS
cHARACTER POSITION IN AScI] BUFFER TO
ng!N ouTPUT STRING

ASCI] BUFFER CONTAINING THE OUTPUT
CHARACTER STRING (NOTE: ACSpUF IS NOT
AFFECTEp OTHER THAN THE INSERTED
STRING)

3.4-2

 MDCONV

Set the starting bit
in the BCD buffer and
the ASCII buffer

*i

Determine word number
in BCD buffer and ASCII
buffer for this character

4

Determine index into array
of ASCII character corres-
ponding to the BCD character

l

Store ASCII character
into output buffer

'

Increment bit locatien in
BCD buffer and the ASCII
buffer

Have all
characters been
converted

RETURN

MOCONY Flow Diagram

RODUCIBILITY OF THE
%gGINAL PAGE IS POOR

3.4-3

MDPCK - User Communication

MDPCK packs characters from a single character per word array into a
six character per word array.

Method

Input: The inputs to MDPCK are the number of' characters to pack and
the array containing the characters to be packed.

Processing: MDPCK determines the number of words needed to pack the
input characters. ‘MDPCK then loops storing six characters at a time into
the output array. During the storé, the first bit of the first character
in the six character set is removed before the store and then returned after
the store. This is done to prevent overflow during packing. If the Tast
word is not filled with input characters, the remaining characters in the
output word will be blanks.

Output: The outputs from MDPCK are the array containing the packed
characters and the number of words in that array.

3.5-1

SAGE.
-ENTRY MOPCK
CALL MODPCK (NCARDS,LWORD,N)

ARGMT 1,0 TyPE DIM DEFINITION
NCARDS I 1 VARB ARRAY CONTAINING ONE CHARACTER FER
WORD
LWORD 0 1 VARB ARRAY CONTAINING PACKED CHAoACTERS
: {STX ¢HpARACTERS PER WORD)
N VLR 1 oN INPUT N IS THE nNUMBER oF SINGLE

CHARACTERS (DIMENSION OF N.ARDS)

ON QUTYPUT N IS THE NUMBER Of WORDS
OF PACKED CHARACTERS (SIX C_LARACTERS
PER WORD)

EXTERNAL REFERENCES
NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

LOCAL COMMON
NONE

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

3.5-2

MDPCK

Is
the number of No
words to pack greater

than7zero

Determine the number of packed
words needed for input characters

Store blanks in
output word

)

‘ RETURN ’

For each set of
six characters !

Is
this the last ~x Yes

Set up to fi1l remaining
part of last word with
bianks ’

set of ciiijjffrf,,r'
?
N

o

[

Remove sign bit from first character

¥

Pack each character into output word

Y

to prevent overfiow during packing}

Return sign bit (sign bit removed and returned

\

Store packed word in output array

\

Sat number of words in output array

]

(RETURN '

MDPCK Flow Diagram

3.5-3

MDPRMH - User Communications

The purpose of MDPRMH is to prompt the user with the variable name and
associated Hollerith values, and to return the response.

Me;hod

Input: The input to MDPRMH consists of a Hollerith variable name and
associated Hollerith values input through the calling sequence.

Processing: The variable name and values are stored in the buffer
passed to MDPRMT (which prompts the user for a response). If the number

of computer words exceeds the print line, then MDPRMH will print all lines
except the last line which will be printed by MDPRMT as the prompt for the
user's response.

Qutput: The output is a buffer containing the user's response and the
status of this output.

3.6-

USAGE

ENTRY MDPRMH

CALL MDPRMH (NAME,ARRAY,LEN,BUFF,STAT)

ARGMT 170 YYPE DIN

NAME ! H 1
ARRAY 1 H VARB
LEN 1 1 }
BUFF 0 I VARB
STAT 4] I 1
EXTERNAL REFERENCES
MDPRMT
DI1AGNOSTICS
NONE
EXTERNAL STORAGE
NONE
BLANK COMMON
VARB 1/0
NONE
LOCAL COMMON
YARB 170 TYPE DIM
NONE

DEFINITON

ITEM CONTAINS THE VARIABLE NAyE
ARRAY CONTAINS HOLLERITH VALUES
ASSOCIATED WITH NAME

NUMBER OF WORDS CONTAINING ARRAY
DATA

BUFFER CONTAINING USER RESPONSEe
UNITS<]NTERNAL B8CD

STATUS FLAG FOR MDPRMH PROCESSING

Lot . RELADD DEFINITION

THE
FPRODUCIBILITY OF
?&ﬂﬁﬁﬁAl.PAGEfE%POOR

3.6-2

MDPRMI - User Communications

The purpose of MDPRMI is to prompt the user with the variable name and
associated integer values, and to return the response.

Method

Input: The 1nput To MUPKML consists Of a Hollerith variable name and
associated integer values input through the calling sequence.

Processing: MDPRMI prompts the user for a response, via MDPRMT, to the
requested input integer values. If the number of values exceeds cne print
line, MDPRMI prints all Tines except the 1a§t.one, which is sent to MDPRMT as
the prompt.

Output: The output is a buffer containing the user's response and
the status of this output.”

3.7-1

USAGE

ENTRY HOPRMI
CALL MDPRMI

ARGMT 170
NaHE [
ARRpY 1

'LEN I
gUFF 0

STaAT 0

EXTERNAL REFERENCES

MDPRMT

DIAGNOSTICS
NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

VARSB 1/0

NONE"

LOCAL COMMON
VARB

NONE

{NAME (ARRAY ,LEN BUFF,STAT}

TYPE DIM

H i

i VARB
1 1

H VaARB

!

170 TYPE pIM

DEFINITION
ITEM CONTLINS THE VARIABLE NaAuE
ARRAY CONTAINS INTEGER VaLUES
ASSOCIATED WITH NAME
NUMggR OF WORDS cONT,INING ARRAY
DATA i
BUFFER CONTAINING USpR RESPONS
UNITSINTERNAL BCD
STATUS FLAG FOR MDPRM! PROCESSINgG

LoC RELADD DEFINITION

REPRODUCIBILITY OF THE
ORTGINAL PAGE IS POOR

3.7"2

MDPRMR .- ‘User Communications

The purpose of MDPRMR is to prompt the user with the variable name and
associated real values, and to return the response.

Method

Input: The input to MDPRMR consists of a Hollerith variable name and
associated real values input through the calling sequenéé.

Processing: If there is less than one print Tine of real values
associated with the variable name input to MDPRMR, MDPRMT is calied with these
values to prompt the user for a response. If one line is exceeded, MDPRMR
prints the Hollerith name and all the values other than the Jast one which
is.passed to MDPRMT as the prompt for- the user's response,

Qutput: The output is a buffer containing. the user's response and
the status of this output.

3.8-1

USAGE
ENTRY MDPRHMR
CALL MDPRHMR

ARGMT 1/0
NAME i
ARRAY i
LEN I
BUFF 0
STAT 0
EXTERNAL REFERENCES
MDPRMT
DIAGNOSTICS
NONE
EXTERNAL STORAGE
NONE
BLANK COMMON
VARB 1/0
NONE

LOCAL COMMON
VARS8

NONE

{NAME tARRAY .LENgBUFF|STAT,

TYFE DIM
H 1

R VARB
] t

1 VARS

[

1/0 TYPE DIM

DEFINIT}ON

17EM CONTAINS THE VARTABLE NAyE

ARRAY CONTAINS REAL VALUES ASSOCJATED
WITH NAME

NUMBER OF WORDS CONTAINING ARRAY

DATA

BUFFER CONTAINING USER RESPONSE +

UNITS-INTERNAL BCD
STATUS FLAG FOR MDPRMR PROCESSINgG

LoC RELADD DEFINITION

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

3.8-2

MDPRMT - User Communicatioqs

The purpose of MDPRMT is to provide the submonitor promptihg capability.

Method

Input: The input to MDPRMT consists of a fxeld data character string,
number of characters in the string and a flag snec1fy1ng the scan type.

Processing: MDPRMT converts the internal BCD characters to ASC II via
MDCONY, adds an end mark and a nuil character, and‘ﬁrints this data as the
-prompt for- the user. The response is read and interpreted to internal BCD
via MDSCAN. If an up arrow "+" was input, the routine will prompt with "4+"
until some other response is input before returning to the caller.

Qutput: The cutput is a buffer containing the format of each field
encountered in the one line text input by the caller.

3.9-1

USAGE
ENTRY MOPRMT
CALL MOPRMT (PRMT,L,EQUFLGyINPUTSTATUS)

ARGMT 1,0 .IYPE DIy DEFINITION

PRMY X I VARB FIELD DATA CHARACTER STRING

L 1 1 1 NUMBER oF CHARACTERS IN PRHT

EQUFLG | 1 1 SCAN_TYpE FLAG —

INPUT 0 I VaRg- DECOpPED INPUT LINE (DECODED gY

- MBS CAN

STATUS O ! 1 STATUS FLAG FOR MpPRMT PROCESSING
EXTERNAL REFERENCES o

MDCONV

MDSCAN

DIAGNOSTICS . -
ABOVE INPUT LINF MAS ILLEGAL CHARACTERSe=plEASE CORRECT AND
REINPUT

———————————w—n—uu——k&—LLLaﬁAL—GHARLGIER—RAS—iﬂuua—ﬁ#ENu;ﬂE_CHAﬂﬁcliﬁ___u__
STRING WAS SCANNED

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

CﬁHHn_!q IMDCO
APQST
ASTRSK
AT
BCKSLH
COLON
COMMA
CBLE
DoLLAR
£QS
"EQUALS
HOLL
INTEG
LBSIGN
LPAR

.. MINUS
NAME
OcTAL
PERCNT -

. PLUS

——— QUESMK
REAL
RPAR
REFEAT
SLASH
SUBS
URARRW

[«

DPOODODODODPDOPDOPpDORPOPOPRDOOOPDODOM

b

RFPRODUCIBILITY OF THE

3.9.2 ORIGINAL PAGE IS POOR

http:III-rG.AL

LOcal rOMMON

NONE

3.9-3

' MDPRMT '

]
HDCONV

Convert BCD string

to ASCITI and add end

marker to string
(2 calls)

4 N

Write the
message

MNrite No

complete
?

Read users
response

Read
succg;sfu1

Yes

\

/ MDSCAN

Encode response, con-
vert to BCD, place in
calling routines buffer

Response
Jegal
?

Indicate "I/0"
error to call-
ing routine

RESponse RETURN

Indicate to calling
routine user entered
+. Change prompt
buffer to prompt user
with + so he may enter

- the directive to be

performed.

REPRODUCIBILITY OF THE
PRIGINAL PAGE IS POOR

MOPRMY Flow Diagram

3.9-4

MDSCAN - User Communications

The purpose of MDSCAN is to scan each f1e1d of the text line and output
an encoded buffer. This buffer contains information relating each field
encountered in the text via a numerical code followed by the data values.

Method

Input: The input to MDSCAN consists of a buffer (in BCD), number of
characters in the buffer, a flag specifying the scan type, and a flag con-
taining the number of characters contained in the prompt. This data is
input through the caliing sequence.

Processing: MDSCAN translates the input text Tine into fields for the
output buffer. Values on the right side of an "=" sign are interpreted and
packed into the output buffer by MDCDAT. Mumeric values not following an
equal sign are converted via MDBCIZ to binary integer. MDPCK is called to
pack binary integers or alpha characters (whichever processing is occurring)
into a character sfring to be stored by MDSCAN in the output buffer.

For subscript values, numeric subscripts are first converted to binary
integer via MDBCI2 before MDPCK is called to pack these digits. Since
alphabetic characters do not require this conversion, MDPCK is called immed-
iately. The packed characters are then stored by MDSCAM into the output
buffer. Subscripts for more than one dimensional array will also be processed.
If the subscript request was for "&LAST", special processing will occur.

The handling of "&LAST" is a design feature and will not be considered in
detail because it will not be used operationally.

When MDSCAN builds the output buffer, the field designator, and entry
length and data (if applicable) are stored in the ocutput buffer for each
field encountered. For definition of the field designators, refer to the
appendix. If an error occurred during processing, the status flag is set
to the character found to be in error. If no errors were encountered, the
status is set to 0.

Qutput: The output from MDSCAN consists of a buffer containing the
field designator and, if applicable, the entry length and data for each fieid
in the input text line (see Appendix for detaiis). Also output is the
status of MDSCAN's processing. These parameters are output through the calling

sequence.
3.10-1

USAGE
ENTRY HMDSCAN
CALL MDSCAN {INPUT¢N,EQUFLG,PRTLENSBUFF,STAT)

ARGMT 1,0 TYPE pIn DEFINITION

INPUT 1 VARS UPON ENTRY INPUT cONTAINS A ONE LINE
TEXT

N I I 1 UPON ENTRY N CONTLINS THE NUMBER
OF CHARACTERS IN INPUT

EGQUFLG] I 1 UPON ENTRY EQUFLG 1F \ U MEANS AN

EQUAL S53GN HAS BEEN PROMPTED AND &
LITERAL STRING MAY FOLLOW. OTHERWISE
INPUT Is A LITERAL L]sT

PRTLEN I I 1 UPON ENTRY PRTLEN CONTAINS THE NUMBER
OF CHARACTERS IN THE PROMPT
BUFF 0 I VARB ENCODED BUFFER CONTAINING THE FIELD®

DESCRIPYOR AND DATA FOR EACH FIELD
IN THE TEXT LINE
STAT 0 1 1 STATUS oF TKE GUTpUT,
0=NgRHMAL RETURN
-LS p=6IVES THE COLUMN NUMBER OF
" THE ERROR

EXTERNAL REFERENCES
MDBCIEZ
HDCDAT
MOPCK

DIAGNOSTICS
NONE
EXTERNAL STORAGE o B
. NONE. S

BLANK COMMON

NONE. —— e . - — e e e

LOCAL. _COMMON. _ e e

NONE._.

3.10-2

HDSCAN

; Are Is the
ﬁgeﬁqgilﬁgigﬁ all characters character "t",
? blank :l@n’ or
? 2 .

Are
all characters
blgnk

{as

the Tast

character been

processed
?

\
set EOF ' - RETURN
fiag A

o Is Is this
-this a special character
chargcter an "="

?

Yes

¥

Call HOCDAT to
interpret data
on the right side
o of "="

Is
this a Teft
parenthesis

?

las

error detected

by MDCDAT
?

Is
this an
aglphabetic or

ampersand
?

Pick up all alpha
characters and call Store alpha characters

HMDPCK to pack in output buffer
characters

g

Get all numeric

., Is
this a numeric

i characters and Store numeric charac-
{not following an = call MDBCI2 to ters in output buffer
? convert value

Set status flag
to error

REPRODUCIBILITY OF THE
@ ORIGINAL PAGE 18 PAN®

MDSCAM Flow Diagram
Page 1 of 2
3.10-3

Kas
value
a numeric
subsgr1pt

fo Move characters |
l to output buffer

Call MDBCIZ to convert
subscript value to
binary integer

Has

Put subscript
value numeric
?

into output
buffer

Pack to BCD character
string via MDPCK

end of %ybscript

C :) Mo

Is
~this the

\

Get the next
portion of
the subscript

character string
equal to "&LAST"
?

pointer to i
character
in error

Last field
for "gLAsT"

Call MDBCIZ to
convert sub-
script for "&LAST"

Hf2

MDSCAN Flow Diagram {Continued)
3.10-4

Page 2 of 2

MDSQZB - User Communications

The purpose of MDSQZB is to remove imbedded blanks in a character string.

Method

Input: The inputs to MDSQZB are a string of characters with imbedded
blanks to be removed and the number of characters in that string to search
for blanks.

Processing: MDSQZB examines the specified number of characters in the
input string beginning with the first character. When a non-blank character
is encountered, it is stored in the output string. If the input number of

characters to examine is negative, blanks within a Hollerith string will
remain.

Qutput: The outputs from MDSQZB are a character string with no imbedded
blanks and the number of non-blank characters.

3.11-1

IsAGE
ENTRY 4D5QZB
call MDSQzZe TNCOL,N)
ARGHMT 1,0 TyPE DIM

NCOL I/0 1 N

N 1,6 1 1

EXTERNAL REFERENCES
NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

LOCAL COMMON
NONE

DEFINITION

ON INPUT NCOL 1S AN ARRAY Oy CHAR=
ACTERS IN WHICH BLANX ARE Tp .BE
REMOVED,)
ON OUTPUT NgoOL !S AN ARRAY cONTAINING
THE PACKED CHARACTERS.

ON [NPUT N 1S THE NUMBER OF COLUMNS’
IN INPUT ARRAY TO SEARCH FOn BLANKS.
IF NEGATIVE, BLANKS wiLL NOy BE
REMOVED WiTHIN HOLLERITH CHaRACTERS
1+.Ec BETWEEN APOSTROPHES.

ON QUTPUT N 15 THE NUMBER Og NON=
B8LANKS cHARACTERS IN NCOL.

3.11-2

(Mosqze)

|

initialize index
into input array

Increment index
in input array

Are
blanks within a
Hollerith string to
remgved

Does this

column have an

apostrophe
?

~ Is it the
first apostrophe of

a set ?of two

Yes Does this
column have a

hlank
7

i

Increment index in
output array

]

Store column in
output array

Has the

maximum numbet

of columns in the input

arrav been investigated
?

to

,Are there

remaining calumns in

output array
?

Blank out remain-
1ngq columns

Ho

!

Set number of non-
Llank characters

|

RETURM

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

MDSOZB Flow Diagram

MDELET - Storage Monitor

MDELET deletes an entry from the storage menitor table (SMT)

Method

Input: - The inputs to MDELET are the label of the desired storage monitor
entry to be deleted.and the entry type if a search for type is to be made.

Processina: MDELET locates the entry in the storage monitor table
corresponding to the input label and flags it for deletion. The required
storage is not released, however and the data base is not automatically
packed by MDELET. If MDELET could not find the label of the SMT entry, a
flag is set to indicate that the entry was not flagged for deletion.

Outéut: The dutputs from MDELET are a flag indicating whether the SMT
entry was found and deleted or not. If the SMT was deleted, the sort, pack,
and deactivate flags are output to indicate deletion of the entry.

4.1-1

ISAGE

ENTRY MDELET

cALL MDELET (LABEL»TYPE,NOFIND}

ARGMT 1,0 TYyPE DIM

LABEL I 1
TYPE I I
NOFIND O I

EXTERNAL REFERENCES
MDF IND

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
VARB 1/0

SORTFG O
PACK 0

LOCAL COMMON
NONE

1
1

H

DEFINITION

LABEL Of THE DESIRED sMT ENsRY
ENTRY TYPE « IF NEGATIVE NC SEARCH
FOR TYPE 1S MADE

ENTRY FIND FLAG

=0 ENTRY WAS FOUNp aANp DELETED

=1 ENTRY WAS NOT FOUND

4,1-2

" MDELET

/ MDFIND

Find the
SMT entry

N

Was ‘the
entry in the

SHT
~_ !

Set flag . RETURN

T Yes

Set the flags
for deletion

Is the-
data core
‘ resigent

Turn on bit to indicate
RAD not packed

Yes

Turn on bit to indicate
core not packed

RETURN

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

MDELET Flow Diagram

4,1-3

MDENTR - Storage Monitor

MDENTR is used by the MDAS monitor to allocate storage for the storage
monitor table (SMT).

Method

Input: Description (type, label, length and column dimension) of the SMT
entry to allocate and a flag indicating storage device (memory or RAD) are
input along with current addresses and flag of the present SMT.

Processina: MDENTR builds an entry in the storage monitor table and
allocates storage for the data either in core or on an external storage device.
The SMT is a part of blank common area beginning at DBSTRT {a blank common
variable). For a definition of an SMT entry see Section 5.3.

The core resident data is allocated from the bottom of bTlank common
backwards toward the SMT. If storage is not available either in the SMT or
the data area, the data base is packed in order to squeeze out the deleted-
entries. 1If storage is still not available-an error flag is output, a
message is printed and the routine returns. When an entry is placed in the
SMT and storage is allocated, the sort flags are set to indicate that the SMT
is not sorted.

The algorithm for MDENTR 1is depicted in the functional flow diagram.

Oﬁtgut: Thé address and size of the data allocation and addresses and
flags associated with the new SMT are output along with an output flag.

4.2-1

USAGE

ENTRY MDENTR.

CALL MDENTR (7TYPE,LABEL,SIZE,IDIM,ADDR,DEvICE,ERROR,

ARGMT i70 TyPE DIn

TYPE
LaBEL
S1ZE
IplM
AppR

C) == =t g
ey g Y P ey

DEVICE I 1

ERRQOR 0 !

EXTERNAL REFERENCES
MOPACK

DIAGNOSTICS

et e s e et

DEFINITION

eNTRY TyPg rlLAG

ENTRY LABEL

LENGTH OF ENTRY

cOLUKN pIMENSION OF gNTRY

ADDRESS OF pATA ALLOCATION

FOR CORg RESIDENT DATa ADDRpSS IS5
GIVEN RELATIVE BLANK COMMON

FOR DATa RESIDING ON EXTERN,L STORAGE
ADDRESS 15 THE NEGATIVE ADDRESS
DEVICE 1NDICATOR

=0 ALLOCATE CORE STORAGE

wi ALLOCATE EXTERNAL STORAGy
ERROR RETURN FLAG

=0 nNOQ ERRQR

=l STORAGE MONITOR TapbE 1S FULL
=2 CORE STORAGE EXCEEDPED

a3 EXTERNAL STORAGE ExCEEDEn

4+e*STORAGE REQUIREMENTS EXCEEDEp
THE STORAGE REQUIRED EITHER FOR CORE OR eXTERN,L DEVICES
IS GREATYER THAN THAT AVAILABLE

EXTERNAL STORAGE
HONE

BLANK COMMON
VARB 170

DaADDR 1,0
EXADDR 1,0

EXMAX I
NTRY 1/0
PACK I
SORTFG O

LOCAL COMMON
NONE

EPRODUCIBILITY OF THE
EEHGBSAl:PA&HEIS POOR

4.2"‘2

MDENTR

Is
data core
resEyent

Yes

/ MDPACK N

Pack SMT

Is
core packed

Set error flag
to one

L

Write error message
STORAGE REQUIREMENTS RETURN
EXCEEDED

A

Is
core storage

available
?

Set address
pointers

Aj2 o

Y

/ MDPACK N
Squeeze out
deleted entries

Is data
base in packed
form

Mo

Set error
flag to 2

#

Set up SMT with type
label address and
size of entry

Write error message
STORAGE RENUIREMENTS je—im=- RETURN
EXCEEDED

RETURN

MDENTR Flow Diaagram

4.2-3 Page 1 of 2

/ MDPACK \
Pack the
data base /

Is
external storage
availab]e

No

Is data
base in packed
fqrm

Yes
Set address Set error
pointers flag to 3

%

Write error message
STORAGE REQUIREMENTS
EXCEEDED

RETURN

MDENTR Flow ‘Diagram. (Continued) Page 2 of 2

4.2-4

MDFIND -~ Storage Monitor

MDFIND is used to locate an entry in the storage monitor table (SMT).

Method

Input: The inputs to MDFIND are the label and type of the desired SMT
entry. If no search is to be made on type, that inbut vwill be negative.

Processing: SORT1 is called to do an alphabetic sort on labels in
the SMI and, if desired, to sort on type also. This sort is done only if
the SMT is not already sorted in the above way. The SMT is then searched
for the input name and type, if type was input. If the entry in the
SMT was found, the output fTag-is set to one and the routine returns. The
size of data, entry type of SMI', address of the data and the address of the SMi
entry are output along with the output flag set to zero. The routine then
returns to the calling routine.

Qutput: The outputs from MDFIND are the entry type, the size and address
of the data and the address of the SMT entry. A flag is also output to
indjcate whether the desired entry was found or not.

4,3-1

JSAGE

ENTRY MODFIND

cALL MDFIND (LABELTYPE,SIZE,ADpR,N,NOFIND)

ARGMT 1,0 TyPE DIM

LABEL 1 1 H
TYPE 1,0 1 1
S1ZE 0 1 1
ADOR 0 1 i
N 0 1 1}
NOFIND © 1 1

EXTERNAL REFERENCES

SORTI
SEARCH
DIAGNOSTICS
NONE
EXTERNAL STORAGE
NONE
BLANK COMMON
VARB I[s0
DBSTRY I
NTRY 1
SQRTFG 1

LOCAL COMMON
NONE

DEFINITION

LABEL OF THE DESIRED sMT ENgRY

ON INPUT TYPE IS THE ENTRY +YPEs IF
NEGATIVE NC SEARCH FOR TYPE 1S MADE,
ON QUTPuUT TYPE IS THE ENTRY TYPE FRoM
THE SMT

S]ZE OF DATA = IF NEGATIVEs DATA
RESIDES ON EXTERNaL STORALE DEVICE
ADDRESS OF DATA = IFf pDATA le CORE
RESIDENT ADDR IS RELATIVE Tn BLANK
COMMON. IF DATA RESIDES ON XTERNAL
STORAGE DEVICEy THE NEGATIV: ADDRESS
1S RETURNED .

ADDRESS OF THE SMT ENTRY RE, ATIVE TO
BLANK CoMMON

FIND FLAG

=0 DESIRED ENTRY WAS FOUND YN THE SMT
=] ENTRy WAs NOT FOUND IN TuE SHT

REPRODUCIBILITY OF THE.
ORIGINAL PAGE IS POOR

4.3-2

MDFIND

Set flag for alphabetic
sort and search on name

!

Set up to search
on name only

Is

search to be

on type
?

Yes

Set up to search on
name and type

Is the
SMT already sorted
properly
?

No

/ SORT1. \

Sort SMT on name
or name and type

MDFIND Flow Diagram

4.3-3

Page 1 of 2

/ SEARCH \

Search the SMT for
the input name or
the name and type

-Set find flag
to one

RETURN

Output the size of
data, entry type of
SMT, address of data

and address of the
SMT entry

!

Set find flag to zero

RETURN

MDFIND Flow Diagram (Continued) Page 2 of 2

4.3-4

MDGET - Storage Monitor

MDGET retrieves data from the storage monitor table (SMT) and stores
the data in an output buffer.

Method

Input: The inputs to MDGET are the name and entry. type of the SMT entry
where the data resides. The Ith and Jth location within the name to begin
the retrieval must be input along with the maximum size of the output buffer.

Processing: The SMT is searched to find the proper entry in the SMT,
If the entry was not found the status flag is set to -1 and the routine returns.
The displacement within the data as specified bn input and the size of the
data is calculated. If the size of the data is not the same as the maximum,
the status flag is set to 1 and the routine continues. If the calculated
size of the data is greater than the input maximum size, the output size is set
to the maximum size. If the data is in memory, the data is moved into the output
buffer and the routine returns. If the data is to be on RAD, MDRADI is cailed
to store the data on RAD. If an error occurred on the RAD store, the status
flag is set to -3 and the routine returns. (Currently an attempt to store
data on RAD will result in a termination of execution.)

Outgut; A buffer containing the desired data is output from MDGET
along with the SMT entry type, number of words in the buffer and a status
flag.

4.4-1

JSAGE

ENTRY MDGET
CALL MDGET {(NAME,TYPE,IDIS,JDIS,MAX BUFF,512E,STATUc])

ARGMT 1,0 TYyPE DIM DEFINITION
NAME 1 1 1 NAME TO BE FOUND N THE SMT DIRECTORY
TYPE 1,0 1 | ON INPUY TYPE IS THE SMT TYnE TO BE

MATCHED IN SMYT SEaRCcH. IF NgGaTivVe
TYPE 1S NOT COMPARED

ON QUTPyT TYPE IS THE TYPE ,5 FOUND
IN THE SMT ENTRY

fIols H 1 4 DISPLACEMENT FOR THE x-oanMSION OF
NAME

JD1IS 1 1 l DISPLACEMENT FOR THE J=DIMENSION OF
NAME

MAX H I 1 MAXIMUM SIZE OF OUTPUT BUFFER

BUFF 0 1 S1ZE bATA FRoM NAME(IDIS,JDIS})

51ZE 0 ! 1 NUMBER oF WoRDS MQVED INTO 2466

STATUS © 1 1 STATUS FLAG

= | NUMBER oF WORDS TRANSFERED WAS
- NOT EQUAL TO MAX
= 0 DATA TRANSFERED o0k
mw]l NAME WAS NOT FOUND
==3 ERROR OCCURED IN ATTEMP+ TO READ
DATA FROM RAD

EXTERNAL REFERENCES
MDF IND
MDRADI

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

LOCAL COMMON
NONE

UCIRILITY OF THE
B SATAL PAGE IS POOR

4.4"2

/[

\

HMDFIND

‘Find the name and
type in the SHT

)

Was
the SMT eniry
fognd

Yes

Compute displacement
and size of data

Is
the size of
the data the same
of tQF max

o

Set status
flag to -1

Y

‘ RETURN)

Set status
flag to 1

Is
the data in
memory

MDRADI

/

Move data into
output buffer

;

_ RETURM

Move data from RAD
into buffer. Currently
this is not operational

Did an error Yes
occur in the data

traq;fer

Set status
Tlag to -3

L

‘ RETURN ,

YDGET Flow Diagram

4.4-3

MDPACK - Storage Monitor

MDPACK removes deleted entries from the storage monitor table (SMT)
and packs the data area.

Method

JInput: The storage monitor table with the entries .to be removed flagged
for deletion and the SMT accounting information are input to MDPACK along
with the device (memory or RAD) to pack.

Processing: -For a memory pack MDPACK Jocates the entries flagged for
deletion in the SMT, set the deletion flag (TYPE = -1) to a large number, and
shifts the remaining data base squeezing out the data for the deleted entry.
The address -portion of the SMT is updated.simu1tane0us]y. Packing of the SMT
is aécomp1ished by sorting the SMI by type, i.e., moving the deletions to
the bottom and resetting the number of SMT entries.

The mechanism of the aﬁove procedure is to check each entry in the SMT
from the last entry to the first. Each entry is noted as to whether or not
the entry is to be deleted. The data base is squeezed after there has been
detected a deleted entry after a non-deleted entry, excluding the first
deleted entry. The data base is alsa squeezed after all entries are checked,
if it needs to be. The PHAZ flag keeps a record of the entries. The definition
of PHAZ is '

no deleted entries found yet
last entry was deleted
last entry was not deleted

end of SMT, Tast entry not deleted and the final data base
squeeze has not occurred

For a RAD.pack, MDPACK returns.

1
W NN O

~ QOutput: The storage monitor table with the deleted entries removed
and the packed data area are output from MDPACK.

4- 5"'1

ISAGE
ENTRY MDPACK
calL MOPACK (DEVICE)

ARGMT 1,0 TyPE DINM DEFINITION

DEVICE I 1 1 DEVICE 70 BE PURGED ALONG W;TH THE
SMTY
0 PACK USER CORE
a1 PACK USER DATA ON EXTERN,L STORAGE

DEVIcE

EXTERNAL REFERENCES
SORTH

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
VARB 1,0

PBESTRT I
NTRY I
PACK 0
SORTFG
DBADDR O

/9

LOCAL COMMON
NONE

4- 5"2

MOPACK

Is the
SMT sorted on
add;ess

Yes

/ SORT1

\

Sort SMT address field

to correlate core storage

to SHT

Is
this a RAD
pack

?

Set pack flag
to indicate
RAD packed

RETURN

Initialize SMT index
to last entry

¥

Decrement SHT index
to the entry before
the Tast one

I5 the SMT

(Is this an entry
in the SHT)
?

Last entry not

deleted (PHAZ = 3) What was
the last entry

(PH?AZ)

Set PHAZ |
flag to 4

l

' RETURN

MDPACK Flow Diagram

4,5-3

index inside the SHT

Last entry deleted
{PHAZ = 2)

Mo deleted entries
found (PHAZ = O)

ODUCTB
REER AL P

ORIGTN

Ilﬁﬂﬁf oF qﬂijg

Page

a
1

of 3

No deleted entry found Last entry not
yet (PHAZ = 0) What was deleted (PHAZ = 3)

the last entry
{PHAZ)
?

Last entry deleted
(PHAZ = 2

Is this
entry to be
de]gted

is this
entry to be
de]gted

Is this
entry to be

deleted
?

Set PHAZ
flag to 3

Set PHAZ
flaglto 2 Yes

] Y
Flag deleted entry and
set type to large numben

l

Note non-deleted
entry

Y

LTA

MDPACK Flow Diagram (Continued) Page 2 of 3
4.5-4

D/

£/

Set PHAZ
flag to 2

|

Flag deleted entry and

set type to large number

-

y

Squeeze data
base

Is this
the Tast entry
{PHAZ = 4)

?

Yes

]

/ SORT1 \
Sort packed
SHMT on type

¥y

Set core pack flag
to indicate core packed

|

Set new address of
first entry of core
resident data

)

Set new address of
the next available
SHT entry

Y

‘ RETURN ’

MDPACK Flow Diagram (Continued}

4.5-5

Page 3 of 3

MDPUT - Storaqge Monitor

MDPUT puts data into the storage monitor table (SMT).

Method

Input: A description of the SMT entry of where to place the data is input.
The data along with a flag to indicate where the data is to be placed (memory
or RAD)} is also input.

Processing: The SMT is searched for the proper entry. If an entry was
found for the data name and the data in the SMT does not have the same attributes
as the input data (i.e., resides on the same device and has the same length)
the entry in the SMT is deleted. If an entry was not found or was deleted,
storage will be allocated in the SMT for that entry. If an error occurs in
the allocation, the status flag is sat to -1 and the routine returns.

If the device to place the data is memory, the data is moved into memory,
the status flag set to 0 and the routine returns. If the device is external
storage, MDRARO is called to store the data on RAD. If an error occurs in
the RAD store, the status flag is set to -3. MDPUT then returns to the calling
routine.

Qutput: Data is placed in the SMT with a new entry in the SMT if one
did not exist for the desired data name. A status flag is also output indicat-
ing if an error had occurred.

4.6-1

USAGE
ENTRY MDPUT
cALL MpPUT (NAME,TYPEJLENGTH)IDINiBUFFDEVSTATUS)

ARGNT. I/0 TyPE DIy DEFINITION
NAME 1 1 1 NAME OF THE SMT ENTRY IN WH;CH 7O PuTY
THE. DATA
TYPE 1 ! 1 DATA TYpPE FLAG
LENGTH 1 i S1ZE OF THE SMT ENTRY
IDIN i 1 1 cOLUMN pIMENSION oF ENTRY
BUFF I ! LENGTH DATA BUFFER
DEV 1 1 t MEMORY /RAD FLAG
w0 MEMORY
=] RAD
STATUS O I 1 STATUS FLAG
= 0 0K

m=] COULD NQT ENTER SMI ENIQY
w=3 RAD WRITE FAILED

EXTERNAL REFERENCES
MDF IND
MBELET
MDENTR
MORADO

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

LOCAL COMMON
NONE

REPRODUCIBILITY OF-THE
ORICINAL PAGE IS POOR

4.6-2

MDPUT

/ MDFIND N\

Search for name
and type in SWMT

Was
the entry found
in thﬁ SMT

Does the

. data in the SHT .
reside on the same device

(memory or rad) as
. the data is to
be put
?

Is
the Tength
in the SMT the same
as the input
- length
?

No

/ MDELET \

Delete old entry
in SMT

MDPUT Flow Diagram

4.6-3

Page 1 of 2

/ MDENTR \
Allocate storace in the//)

SMT for input name
Mo Set status
flag to -1 ; RETURN

Was
storage allocation
. Successful

B/1

Is the
destination of data
to be memory

Yes [Siore data into Set status
~ 1 SMT memory ™1 flag to 0

RETURN

/ MDRARO \
Store data into RAD
currentiy an error
with occur :

Was there

an error in
the store

No

{IPRODUCIBILITY OF THE
DRICINAL PAGE IS POOR

Set status
flag to -3

RETURN

MDPUT Flow Diagram (Continued)

4.6-4 Page 2 of 2

MDRADI - Storage Monitor

MDRADI, when developed and implemented, will retrieve data from the
RAD (random access device) portion of the SMT and place it into the pro-
vided memory buffer. MDRADI is the mechanism for acquiring particular
data elements which are in the RAD portion of the SMT, whereas MDROLL is
the mechanism for transferring data between the memory and RAD portions of
the SMT.

407']

MDROLL - Storage Monitor

MDROLL's purpose is to bring into memory all data required by a processor
for execution and, if necessary, will roll data not required onto RAD. However,
currently the RAD is not defined therefore MDROLL does not perform the above
function but exists to provide the interface. -Currently MDROLL only determines
if enough memory is available.

Methaod

Input: The number of data words required by a processor to execute is
input to MDROLL.

Processing: When the number of words available is less than the words
required for éxecution,‘additiona1 code must be implemented to plaée data on
RAD, This code wj]1 determine what is necessary to remain in memory, determine
the hierarchy of data to go to RAD and will write this data on RAD. The Tlogic
of the current MDROLL is shown in the figure with a comment where the proposed
code should be inserted.

Qutput: A status flag indicating the availability of memory is output.
The proposed output will be data on RAD that will not fit into memory.

4.8-1

USAGE
ENTRY MDROLL
CALL MDROLL {NWORDS,STATUS!

ARGMT 1,0 TyPE plu DEFINITION
NWORDS | 1 1 NUMBER oF WORDS IN SMT REQU{RED
STATUS 0 1 t STATUS FLAG

= 0 NUMpER OF WORDS AVAILAB,E IS

GREATER THAN THAT REQUIGED
m=! NUMRER OF WORDS AVAILAB(E IS
LESg THAN THAT REQUIRED

EXTERNAL REFERENCES
MDPACK

DIAGNQSTICS
MEMORY REQUIRMENTS EXCEEDED
seseceocoe WORDS REQUIRED weeevenvts "unus AVAILADWLE

NUMBER OF WQRDS REQUIREpD. IS GREATER THAN TH,T
AVAILABLE: STATUS FLAG WILL BE SET TO =l.

EXTERNAL STORAGE

NONE

BLANK COMMON
VARB 1,0
DBADDR I
NTRY i

LOCAL COMMON
NONE

4.8-2

‘MDROLL

Set status flag
to zero

!

/ MDPACK \
<;\ Pack user core //>
& N
N\ 4

4

MDPACK
Pack RAD

J

Determine words
available

, "1Is
~ number of words
available greater than

or equal to words
required
?

Proposed code to
be inserted here

Set status
flag to -1

$

Write error message

RETURN

WEPRODUCIBILITY OF THH
ORIGINAL PAGE IS POOR

MDROLL FTow Diagram

4‘1 8;3

MDALOC - Execution Controller

MDALOC establishes the input and output arguments’ linkages for a pro-
cessor, allocates storage for all output parameters, and communicates para-
meters scan control data to the resident.

Method

Input: The control table, in the working buffer, contains the argument
specifications and data input to MDALCC.

Processing: MDALOC is entered from MDSMON for each command to gstab1ish
the argument linkage. MDALOC's function is ta allpcate storage for output
variables, to determine argument addresses of input and output variabies
and to initialize -scan values.

The control table containing the argument specification is passed to
MDALOC- through a working buffer in common. If the control table is incomplete,
the status flag is set to -1 and MDALOC returns; otherwise, the control
table is packed before proceeding.

Before the allocation of storage for output variables can be performed,
MDALOC must determine the amount of memory not yet allocated in order to
decide if the total amount of memory will be more than the available memory.
This is accomplished by first initializing a memory counter to the known
memory which includes the memory needed for immediate data {=). Each argument
is examined. If the argument is immediate data, no memory is added to the
memory counter. If the argument data is indirect (@), memory will be added
to the memory counter, ignored or an error will occur depending on the argument's
input/output. For output arguments the memory counter will be incremented by
the size of the data. If an SMf entry aiready exists for this name, the type
of the output array to be created and the SMT type that exists must be the
same and the size of the SMT entry must be larger than the array to be created
or the old SMT entry will be deleted. If input arguments are not immediate
data or in IMS, an error will occur.” In no case will memory be added to the
counter for an input argumeht. After all arguments are checked MDROLL is
‘called to determine if enough memory is available and if not to roll part of
data to RAD (not implemented). The new control table is then placed in the
SMT with the name &CONTB and with a type of 1000. A detailed description of
above is depicted on pages 1 - 5 of the flow chart.

5.1-1

The allocation of storage for output arguments and the setting of the
argument address are shown in the fiow chart on pages 5 - 7. For each
argument the address within the data base that contains the data is cal-
culated and the address is placed in blank common (variable name ARGADD
dimensioned 30). If an argument is not found in the SMT with the same name
and type, MDENTR is called to allocate étorage and to build an SMT entry
for thataargument. If an argument is incomplete and is not a scan variable,
the completion flag for the entire control table is set to incomplete,
an error message is printed, and MDALOC returns. The argument data
address for immediate data is simply the relative address within the
control table plus the address of the control table. For indirect data, the
address is calculated by determining the amount of memory left in the control
table and subtracting that from the next available cell in memory after the
control table. The addresses of the scan variables are set to B(36) and B(41)
in blank common.

The scan initialization performed by MDALOC is shown in pages 8 - 10
of the flow chart. If the'scan is activated, the preamble table of the data
box is set up. The definition of the table follows:

format flag number of dependent variables in summary vector
name of X variable name of Y variable —

units of X variable units of Y variable

X centroid of scan Y centroid of scan

X step size Y step size

number of steps to be number of steps to be

taken on each side of taken on each side of

X centroid Y centroid
If any of the two scan arguments is incomplete, the values for that argument
are zeroed., The scan variables within the intramonitor communication data
area are also set. The preamble table is output to RAD and the file opened.
The argument text definition text is then output to the same file. Currently
the argument text definitions are blank. The data box is now initialized
and ready to accept data.

5.1-2

Qutput: The addresses of argument data are placed in biank common and
the control table from the working buffer is placed in the SMT with the
name &CONTB and type of 1000. If a scan is activated for this processor,

the scan values are placed in blank common and the preamble to the data box
is output to RAD.

5.1-3

AGE
ENTRY MDALOC S
CALL MDALOC (STATUS)

ARGMT 1/0 TYPE DIM DEFINITION

STATUS O I i STATUS FLAG

— - .- = 0-STATUS oK

= =] CONTROL TABLE INCOMPLETE
=2--cONTRCL -TaBLE paTa NOT FOUND
=3 UNREFINED INPUT ARGUMENT
-q.uA?A IS ON RAD/NOT IMPLEMENTED
=5 ERROR IN MDENTR
=4 .ERROR IN MDpPuT

= =7 ERROR [N SCAN DATA
—_ e e mm—e e e e —..®. =B _ERROR IN..MDPYUTC
= =9 1/0 ARGes OF INSUFFICIENT S1ZE

'BEEL

EXTERNAL REFERENCES
MDCTPK . - - _—
MDSPEC

e MOLKUME o o o e e
MDF I'ND
MDIHMS| .- N s e - -
MDELET
MDROLL - Ul S e
MDPUT

ceme —— - -MBENTR - —— o - e T A e . R
MDENTS)

_ - - MOPUTC s —_ ———

1%1

——DIAGNOSTLCS . .
esvsess CTYPE 3 DELETED,
- . __THIS ARGUMENT. 1S .QUTPUT .DATA THAT IS_NOT .JMMEDLATE. AND .
THE TYPES DO NoT MATCH THEREFORE THE GLD SHT ENTRY IS
-- . DELETED. - --
¢®+ERROR ENCoUNTERD WHILE PREPARING FOR
. - .. _PROCESSOR_EXECUTION _. e e e
STATUS FLLAG KAS BEEN SET To A NEGATIvE NUMBER.
SEE pEFINATION QF _THE.FLAG.FQR _POSSIBLE ERROR._.

. —.EXTERNAL STORAGE _ _ e e e e e 4

THE PREAHBLE AND THE ARGUMENT DEFINITION TEXT OF THE
— - e~ DATA BOX..IS5-QUTRUT Tg RADe .. . — i e

— - BLANK COMMON
VARB 1/0
ARGAD
- <. ARGADD .
DBSVLN
- ———NUMARG
SCANF
- SCNVAL
VERSON

—— ~—REPRODUCIBILITY OF THE -
_ ORIGINAL PAGE IS POOR

- DOoOOODO
£
!
I
I

- COMMON /MDBUFF/

VARB 1,0

"~ TeoAtA 1T

e BSIZE_ I ——
WBUF 1,0

5.1-5

HDALGC

Is the

Yes

control table EEt ?tatus
complete 0 -
?
Af1,2,3,4,5,
6.7.8.%,10
)
HDCTPK Write message
ERROR EHCOUNTERED
Pack control WHILE PREPARING FOR
table data PROCESSOR EXECUTION
L
Is number (RETURN)
of arguments
ZEero
7
Initialize the size
of memory needed for
the control table
and the argument
number to 1
In o
|
/ MDSPEC \
Determine argument
specification
"~ What Immediate (=)
is the form w—{ H/4
of gata
Execution Time (@)
MDALOC Flow Diagqram
Page 1 of 10

5.1-6

/ HOLKUP \

Determine location
of argument data

Was No
argument
fognd

H

Set status
to -2

Yes

/ HDFIND AN @
Find data in
SHT by name

Was
entry found
in ?SHT

a

No

is
argument an

input
?
No
c/3
]
/ MDINST N\
Retrieve output INS
data and generate an
SHY entry for it

\as
the data
in INS

No Set status

to -3

MDALOC Flew Diagram (Continued) Page 2 of 10
5.1-7

REPRODUCIBILITY OF THB

s

RIGINAL PAGE IS POOR

Yes Is the type
in SMT same as the

data type
?

Write message that
data entry deleted

Is
data input
? in SHT

Yes

MOELET

Delete data
entry in SHT

/ HDFIND \

Find data in SHT
by name and type

Was
data found
el

Is size of
SHT entry less than
data ?entrv

What is

the I/0 of

the data
?

Input/output

Set status
to -9

HDALOC Flow Diagram {Continued) Page 3 of 10

5.1-8

Yes [Set status
to -4

No *
L

Increment memory counter
by size of data plus &
{SMT entry words

)

Have atl
the arguments been

processed
?

resigent

No [rcrement argu-

ment counter

Yes
/ HDELET AN
Delete old SMT
entry for &CONTB
|
/ MDROLL \

Determine if enough
memory is availabie.
Rol1l data to RAD if
necessary (not
implementad).

Has
enough memory Set status
available to -5

Yes

HDALOC Flow Diagram (Continued) page 4 of 10
5.1-9

REPRODUCIBILITY OF THE
OPATTNAL PAGE 1S POOR

S/ HOPUT \

Create entry in SHT
and put data in SHT
with the name LCONTB
and type 1000

Was there Set status
an error in to -6
MDPUT

HDFIND
Determine SMT
address of data

\

Initialize scan
counter to O

K/7

. Is
this argument
comp}ete

Yes 1'iI'®

Is scan to Set comnletion flag

activated for this for all data to

arngE"t I | incomplete

]
Set status
flag to -1

Have
there been two
previous arguments that

were scan active
var1$bles

Increment scan
counter

z

L/6

HDALOC Flow Diagram {Continued) Page 5 of 10
5.1-10

Set data address to an
address in the resident/
submonitor interface data
darea. For the first scan
point, the data address
is B{36); for the second
B(41).

/ HDLKUP N\
Look up relative
address of data in
-working buffer

|

Determine the true data
address by adding the
ralative address within
the working buffer to
the address of the
control table

. Immediate (=)
What is
the farm of -1 V/7
the gata

Exgcution time (@)

Y

/ HDFIND N\

Find data address
for argument

HDALIC Flow Diagram (Continued) Page 6 of 10
5.1-11

Was
data 7found

to

Determine size
needed to
allocate data

1
/ MDENTR \

Allocate storage
for data and
create ST entry

Was
allocate
5ucc§§5fu]

Ho Set status
[flag to -4

Betermine
data address

Place address in
address array.

The subscript of
the array corres-
ponds to the argu-
ment number

1
aréﬁ%gﬁthbeen Increment argu-
processed ment counter
- ?

HDALOC Flow Diagram (Continued)
5.1-12

Paqe 7 of 10

Increment argu-
ment counter

Initialize number of
incrementation of the
two scan points to zero

Is
the_scan
act1gated

Yes

Set format flag and

the number of dependent
variables into a pre-
amble table for the
data box

[

Initialize arqument
counter to one

)

Is
this argument
cump;ete

/~ HDLKUP \

Find location of
argument data

MDALOC Flow Diagram (Continued)

5.1-13

Blank and zero out
variables in preamble
table for this argument

Set status
to -7

Page 8 of 10

e HMDCNTS N\
Find argument number
to be scannad

Was
argument number

found
?

No Set status
to -7

Yes

Set the arqument address

for that argument number
to B(36) for the First
scan variable and B{41}
for the second

|
Set data base item
DBSVLM to the number
of dependent variables
in the summary vector

[

Set data base item
B(36) - B(45) to scan
variables for this
argument

Y

Set preamble table
for this argument
to scan values

Is this

the second scan

argument
7

HDALOC Flow Diagram {Continued) Page 9 of 10
5.1-14

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

/ MDPUTC \
OQutout the preamble
table to RAD and
open file

L
/- HOPLTC N\

Qutput the argument
definition text to
same file as above
(currently blanks
are output)

Was there Yes Set status

an error in
MDPUT to -8
No
qQ/8 -
| (D)
Set status

MDALOC Flow Diagram (Continued)

5.1-15 Page 10 of 10

MDCMTG - Execution Controller

MDCMTG brings the command table into memory (SMT) and places the
requested command into the intramonitor communications area of blank common.

Method

Input: The majority of the input is contained in blank common and is:
the command table name, the command table type, the command number to be
executed next and the number of the last command to be executed. The call-
ing sequence contains a flag indicating if this is the first execution of
MDCMTG for this command table. If it is, the command to be executed next
and the Tast command are sequence numbers which are converted to command
numbers.

Processing: The command table is brought into the memory portion of
the SMT, if necessary. If this is the initial execution, the range of
commands is checked for legality, and, if valid, converted to command num-
bers and stored in common. If an error exists in the request (i.e., bad
sequence number) control is returned to MDSMON with an indication of this
occurrance. An error message is also printed.

In each execution, the command number to be executed is compared to the
Tast number to be executed and the last number is compared to the total
number -of commands in the table. If either comparison shows that the limits
have been exceeded, an error message is output and control is returned to
MDSMON with a status indicating such. If neither limit is exceeded, the
command is broken into jts characteristic parts and placed in common.

Othut: A status indication is passed through the calling sequence.
A1l other oﬁtput is placed in blank common and is: a print flag, a temporary
edit existence flag, the control table type, the control table name, the
processor name and the sequence number of the command to be executed.

§.2-1

USAGE
ENTRY MDcMTG
CALL MDCMTG (STATUS)

ARGMT 1/0 TYPE DInm DEFINITION

STATUS 1,0 1 1 UPON ENTRYsSTATUS INDICATES If THIS
IS THE INITiAL ENTRY: =0,INITIAL
ENTRY, =1,NOT INfTIAL ENTRY, UPON
COMPLETION OF EXECUTION.STATUS
INDICATES THE VALIDITY OF THE INPUT:
=0,y INPUT GOOD! =§,5YNTAX ERROR IN
INPUT,)

EXTERNAL REFERENCES
MDCMTS
MDF IND

DIAGNOSTICS
¢s8NON=EX[STANT SEQUENCE NUMBER
THE USER HAS SPECIFIED A& SEQUENCE NUMBER TO EXECUTE
WHICN DOES NOT EXIST.

EXTERNAL STORAGE
NONE

BLANK COMMON
VARB /70

(=]

CMDNO 1
CHMTNAM
CHTYP
CTNAME
CTYPE
DIRECT
EDIY
ENDNO !
ENTRY
PNAME
PRINT
SEGNO

OO0 = 0Ore OO o™
(=]

LOCAL COMMON

NONE

5.2-2

Yes

‘ MOCMTG ’

)

/ MDFIND \

Find the

address of
the command
table

Qutput error

message

First
execution
?

No

/ MOCMTS \

Obtain command
number of start-
ing sequence
number

Legal Qutput error

numbeyr message

?

/ HMDCMTS

Obtain command
number of endina
sequence number

Qutput error

messaqe

Qutput error

. Commands
Tegal
?

messaqge

Yes

Place portions of

)

command to be
eXecuted in common

HMBCMTG Flow Diagram

5.2-3

_,é RETURN '

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

MDCMTVY - Execution Controller

MDCMTV is used to interpret and verify the directive given for SEMI,
AUTO or AUTO* mode.

Method

Input: The only input to MDCMTV is a buffer containing the directive
after processing by the user communications component.,

Processing: After verifying the syntax of the directive, the command
table type and name are extracted from the directive and placed in blank
common. If the user has specified a range of commands to execute, the
beginning and ending sequence numbers of this range are placed in common
and control returned to MDSMON. If a range is not speciffedi_ieros are
placed in common in place of sequence numbers.

Qutput: A status flag indicating the validity of the directive is
passed through the calling sequence. Al1 other output is in hlank common
and is: the command table type, the command table name, the sequence‘num—
ber of the first command to be executed (or zero if not input) and the
sequence number of the last command to be executed (or zero if not input).

5.3-1

USAGE

ENTRY MDCMTV
CALL MDCMTYS(INPUT,STATUS)

ARGMT 1,0 TYPE DIy

INPUT I { VARB

STATUS { O 1

EXTERNAL REFERENCES
NONE

DIAGNOSTICS
ese SYNTAX ERROR
THE USER MADE A

DIRECTIVE.

EXTERNAL STORAGE
NONE

BLANK COMMON
VARB 1,0

CHMONO 0
CMTNAM 0
CHMTYP 0
DIRECT 1
ENDNO 0

COMMON / MDCODE /
VARB 1,0

ASTRIC
COMMA
DOLLAR
EQS
INTGR
HINUS
NAME
PERCNT
UPARRW

mp i sy WA bl peg pay By ey

LOCAL COMMON

NONE

DEFINITION
BUFFER cONTAINING THE DIRECTIVE GIVEN
FoR THE SEM1,AUTO OR AUTO# MODE,

FLAG SHOWING PRESENCE OF A SYNTAX
ERROR IF IT IS5 NONZERQ

SYNTAX ERROR WHEN HE ENTERED THE

5.3-2

MDCMTV

Verify
syntax
No Qutput error
message
Yes

Determine command
table type

Command Use &CMDTB

table name for name

given
?

No

Sequence

numbers
given
?

Yes

Determine what numbers
are present and place
in common

RETURN

MDCMTVY Flow Diagram

5-3-3

MDMERG - Execution Controller

MDMERG, when developed and implemented, will Tocate any applicable
temporary edits within the command table being executed and modify the
control table accordingly before the particular command is executed. The
accompanying flowchart is a functional representation of MDMERG's task.

5- 4"']

| MDMERG '

!

/ HDFIND \

Find the
command
table

Y

Find the temporary
edits and determine
size of edits

i

Wil thhﬂ"

fit in the uvnused
space of W.B.

Move the edits to
the W.B., place flags
in specs - delete
from data

Determine available
space and move that
many edits to W.B.

/~ MDCTPK \

Pack the table
to remove
redundancies

Y
/ MDSPLT '\

Split the
table

No All
temp edits

processed
?

Yes

Determine if control
table is complete and
mark accordingly

REPRODUCIS
ORIGINAL v

ADMERG Flow Diagram

5,4-2

“BILITY QF. Ty
PAGE 18 }3()(1§?ID

MDPRT - Execution Controlier

MDPRT, when developed and implemented, will print the control table
variables at execution time which have been designated to be printed. The
** feature of the control level syntax is used to designate execution time
printing of a control table variable. Input variables are printed before
processor execution and output variables are printed after processor
execution.

5.5-1

REPRODUCIBILITY OF THE

ORIGINAL PAGE IS POOR
MDSMON - Submonitor/Execution Controller

MDSMON is the main subroutine to the submonitor/execution controller
component. This routine is used to assist the user in constructing and
executing a simulation. MDSMON's execution controller function is to receijve
user inputs regarding the commands to be executed, call the control table
editor to complete the control table if necessary, and call MDALOC to
establish the proper linkages for all arguments input to and output from
each processor executed.

Method

Input: The inputs to MDSMON are obtained from the user. The user is
prompted for directives and in the MANUAL mode commands are input, in the
SEMI mode the user is prompted to verify or to change the command. In the
AUTO mode there is no user interaction unless an incomplete control table is
encountered.

Processing: MDSMON is entered from the MDAS resident to control the
execution of a simulation. On the initial entry into MDSMON the user is
prompted for an access code and whether or not to initialize the data area.
The user is then prompted with an up arrow for a directive. Valid directives
are:

USAGE Gives elapsed time of MDAS session

COPY Not operational
QUIT Terminates session
EDCMT Edits command table
Ut‘i'th EDCNT Edits control table
directives TOC Lists table of contents of the information

elements in user data area
DELETE Deletes data area in- SMT

DUMP Lists contents of an information element
SAVE Save data area (SMT)
RECALL Recall saved data area (SMT)
SEMI Executes commands in command table but allows
user to alter commands before execution
Execution AUTO Commands in command table are -executed without
directives any user interaction

MANUAL Execution controller prompts user Tor each command

AUTO* Same as AUTO but commands are printed as they
are executed.

5.6-1

For each utility directive, MDSMON calls a subroutine to.perform the
designated function and then returns for another directive (except in the
case of QUIT).

The execution directives are processed within MDSMON. When one of
these modes is entered, MDSMON processes a command and returns to the
resident for execution. When MDSMON is reentered, the mode remains in
effect until all commands are processed and executed at which time the user
is prompted for a new directive,

In the manual execution mode, MDSMON prompts the user for each command
to be executed. The end of the execution sequence is determined when the
user responds with an "+" or fails to enter a new command (i.e., presses
carriage return in response to the command prompt "#"). In the manual mode
MDSMON will verify and interpret the syntax of each command entered.

In the automatic and semi-automatic execution modes the name of .a
command table is input and MDSMON will retrieve this information element
from the storage monitor table (SMT}. Once the command table has been stored
in the working command table (&CMDTB), its commands are processed sequentially
Each command to be executed is extracted from &MDTB using an index stored
in non-volatile memory. An optional field of the SEMI and AUTO directives
allows the user to specify the range of commands or the beginning command in
the execution sequence. The sequence number input in that field determines
the initial value of the command table index.

In the automatic execution mode the processors specified in each of the
commands are executed with no user interaction unless an incomplete control
table is encountered. An option on the AUTO directive has MDSMON indicate
1ts progress by printing each command as it is executed.

In the semi-automatic execution mode the controller prompts the user
with the sequence number, processor name and control table name of each
command. In response to this prompt, the user has five options:

1. Carriage return, giving concurrence to execute the command.

2. "# nnn", directing the execution controller to a different command
in the table (nnn is its sequence number).

5.6-2

3. "#", indicating that a manual override command is to be input in
place of the prompted command.

4. "\", indicating that temporary edits are to be made to the con-
trol table before executing this command.

5. "y the SEMI mode is to be aborted and control returned to the
directive Tlevel.

In each of the execution modes, MDSMON checks the control table specified
in each command for completeness and for consistency with the current version
of the processor to be executed. A revision number is retained in the pro-
cessor catalog (PROTAB) for each processor and updated only when the processor
interface changes. This revision number is also placed into each control
table when it is created.

If an incomplete control table is found MDSMON calls the control table
editor (entry MDEDCN) for the purpose of interacting with the user to complete
this table. In the MANUAL and SEMI modes a syntax mechanism {"\" following
the command) exists for directing the execution controller to call MDEDCN
even if the control table is complete.

For each processor to be executed MDSMON must also establish the input
and output arguments' 1inkages. This is accomplishad by calling MDALOC
which also sets up the parametric scan control data. If the processor is
a utility, MDALOC will not be entered. The utility processor will be cailed
instead and will set up its own input and output argument Tinkage. Currently
only one utility processor exists, MDALCT, which performs the ALOCAT command
(allocates an array).

Qutput: The output from MDSMON is dependent on the input directive. If
the directive is other than SEMI, AUTO or MANUAL, the designated function is
performed. If MDSMON is in the SEMI, AUTOC or MANUAL mede, the control table
is edited if it is incomplete or is specified on input for edition. The
argument Tinkage is established for the processor before returning to the
resident for execution of the command.

5.6-3

SAGE

e ENTRY _MDSMON .
CALL MDSMoN

EXTERNAL REFERENCES

e = -—-MDLOGO_ e e i
MOPRMT

e e MDSMTR . - --
MDCMT Rk .

- - ~-MpehT —
MOUTIL

e e MDRULT e
MDVYCMD ’)

meen ewe SEABRCH____ . . __.
MDGETC
MDGEY
MDSPLT

— =MDMERG.

MDF IND

. MDCMTL . .) e
MOTGC
MOCMIY ...
MDCMTG

e — MOCMTIS. - _
MOSMTW

- - OBEY B -
MDEDCN
MDALOC
MDCONYV

e e e e MRALCT.

DIAGNOSTICS
UNDEFINED DIRECTIVE
RESPONSE TO UP ARROW WAS NoT LEGALo
1T MUST BE_ A DEfFINED DRECTIVE
PROCESSOR NAME ses.s0 NOT FOUNp
PROCESSOR NAME NOT golUND Iy THE PROCESSBR CATALOG ———
CONTROL TABLE NAME sesees NOT FOUND
_— . CONTROL TABLE NAME NOY FOUND IN THE cONTROL-TABLE
#%% REVISION NOs OF ¢eseseios} DOES NOT MATCH
e RENISION NOs OF CONTROL—TABLE —fevty—
THE REVISION NUMBER [N THE CONTRCOL TaBLE DID NOT
——MATCH THE REVISION-NUMBER FOR THIS RPROGESSOR—IN-—THE e
PROCESSOR CATALOG
see L LEGAL BESPONSE ——
IN THE SEMI-AUTOMATIC MODE, AN ERROR OCCURED IN THE
___q____*_____ERﬂﬂﬁllﬂG_ﬂB—IHE—ussRLS—ﬁlel—%NEUI.WAS_NQIW% BOQUND, ..
BACKLASH OR A CARRIAGE RETURN®
——— EXTENT OF asyene {,nnaey 0eees,} 1S TOO L ARGEFOR
CURRENT MDAS CONFIGURATION (osyse0pav000yls
CURRENT pROCESSOR_MILL NOT FrT INTO THE REMAINING —— - ——
PORTJON oF MEMQRY
— . #e» ERROR N ALOCAT =u STAYUSE ,,,
ERROR OCCURED [N ROUTINE MpaALCT
- [0 .ERROR WHILE PRoMPYING
ERRQR OCCURED [N ROUTINE MDPRMT

5.6-4 REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

EXTERNAL STORAGE

VARB
¢MDNO I
CHMTINAM 1
CMTYP
_ CTNAME
CTYPE
DIRECT
DBANK
EDIT .
. ENDNO
o ___ENTRY.__

0
0
4]

1

IBANK

- —— PNAME
PRINT
ie e —.. PRONAM
PRONUH
e e BROTAB . I
PTABKY

- -. -SEQNO.

l
]
I
I
I
0
0
0
0
1
I
Q

VARB

BDATA O
. - .DSIZE. 0
MOLEN ©

— COMMON_£MDCODBE/
1s0

VARB

. _BLANK COMMON, _
1,0

40 .

~COMMON -/MDBUFF/
1,0

- - WBUF. .. 0.

_ ~

ASTRK
8XSLSH
EOL
1NTGR

L B B R

NAME

QSTION 1

BOUNE I .

LOCAL COMMON
NONE

5.6-5

tnitiat ~=Jo

Manual

entry
?

Yes

/T mwees

Prompt user for
access code
|

VARRETT EEA

Prampt user
INITIALIZE DATA
AREA? (Yes/Ho)

Answer
to prompt
YES

mode
?

Increment cormand
number

Have all
commands been
exeqyted

Yes

Write error
message

/ HDSHTR \

Read previously output

ST and initialize data
base. User prompt for

file name

1

RETURN

HDSMON Fiow Diagram Page 1 of 9

B/1,2,3,4,
5,6,7,8,9
]
/ HOPRMT N\
Prompt an up arrow
for new directive

. Error
in prompt
?

Was res-
ponse a question
mark

Was
rasponse a
nqpe

/ OBEY \

Perform USAGE

Is
response

directive - gives a USAG Write message
elapsed time for 7 £ URDEFINED
entire session 1 DERECTIVE

ﬂo

Is
response a defined
d1regt1ve

What
was the
directive
?

MANUAL SEMI M0 AUTO* QUIT EDCHT EDONT QELETE TOC

DIOBRONRO

CoPY DUHP SAVE RECALL

MDSMON Flow Diagram Page 2 of 9
5.6.7

RFPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

cs2

qQuit
directive
|
HDQUIT
lrap up MDAS
session
]
' STOP j
EDCMT
directive

Yes

MDCHT

Command table
editor

Has user

already been prompted

with up arrow
?

D2
BELETE
DUMP or
COPY
directive
3
/ HDUTIL \
Perform utility
directive (copy
not implemented)
G2
SAVE or
RECALL
directive

|

Hove input values
into array for use

in reading or writing
the SHMT file

SAVE Hhat
is

directive
?

]

RECALL

|

Ef2

T0C
directive

)
/ MDTOC N\

List table of
contents of the
information
elements in the
user data area

H/2

EDCNT
directive

HMDCHT

Control table -
editor 4

Has user Yes
already been prompted

with up arrou
?

/ MDSHTH \

/ MDSHTR \

Write SUT on file.
If no f1le name is
input, prompt user
for name

Retrieve SMT file.
If no ie neme is
input, prompt user
for name

HMDSMON Flow Diagram

5.0-8

Page 3 of 9

9

SEMI, AUTO
or AUTO*
directive
\
/MMty N\
Interpret 1nput
directive

wooMTE

Put command fable
in memory {only on
initial call) and
find requested
command

/

AHTO or
AUTO*

/ HDP RHT N
Prompt user with
the command

Up arrow

returned What 1is Error

the status of
prompt
7

Write error message
%%+ [| EGAL RESPONSE

llo Error

HDSHMON Flow Diagram
5.6-9

Page 4 of 9

OF THE
RODUCIBILITY
R ANAL PAGE 1S POOR

Hha

was the

response
o

F i 1]
Manual Others Temporary Command 0.K.
ov?r$1de e%its {carriage return)
F-]
Ed

Set flag indicating
temporary edits are
to be made to con-

What
followed the
§ trol table

[]
Blanks Command Others
number

/ MDFIND \

Find command
table address

/ HDCHTS \

Determine command
number given the
sequence number of
command and the
number of commands

|

Set flag to not
bring command
table in memory

again

1DSHON Flow Diagram Page 5 of ¢
5.6-10

N/1,2,5,
6,7

MANUAL
directive

|

yd MDPRHT \

Prompt user with
2 paund (#)

Was res-,
ponse a carriage
return

]

'Was
respanse a
question
mark
?

HDYCHD

Interpret
comntand

rencountered

Set flag to
indicate temporary
control edits

MDSMON Flow Diagram
5.6-11

Page 6 of 9

http:agaPg.6o

0/4,
&

/ SEARCH \

Search processor
catalog for pro-
Cessor name

Hrite message
that processor
name not found

Is

/ HMDGETC \

default
contral table to
be gsed

/ MDGET N\

Set control
table franZSHT

Get the control
table from RAD
for this processor

Write message
that controi
table not found

Is
the revision
“number for the processor
the same as the revision
number for the
contro% table

MDSHON Flow Diagram
5.6-12

Write messaqge
qiving revision
numbers

Page 7 of 9

THE
FPRODUCIBILITY OF
gBJGINAL PAGE 1S POOR

0/7

/T amser .\

Split the control table
with the argument speci-
fications at the beginn-
ing of the buffer and
with the data at the
bottom

/ HDHERG \

Merge temporary edit
te control table with
control table (not
operational)

Were
temporary edits
to be made to control
table (in SEMI/,
in MANUAL :)

?

o

_‘

/ MDFIND \

Find command
table address

/ HOCHTL \

Print command but

Is
~~ all data
in contrgl table
complate

MOSMON Flow Diagram
5.6-13

do not 1ist tem-
\porary edits

Page 8 of 9

S/é

|

/ HDEDCN \

Conplete contral
table which 1s in
the working buffer

User has already
been prompted

Error
occurred

=i 1/2

Ho error

Is
all the data

complete
?.

/ MDALCT \

Allocate array
(utility processor
\\ ALOCAT)

Is
this a utility
processor
r

Ho

/ HDALOC \

Allocate user variable
storage and initialize
data box

Was
there an
error
?

Vrite error message
ERROR IN ALOCAT
-== STATUS = ---

Other
arrors

Incomplete
contral table

Error in

HDALOC

err‘ér @
/ HDCORYV
Convert processor
name to ASCII

Is
processor data

Yes
< bank and instruction data

tIrite error

too large. for remain- message
ing memory
?
MDSHMOK Flow Diagram Page 9 of 9

5.6-14

MDCMNT - Command Table Editor

MDCMNT is the interfacing routine between the command table editor
(MDCMT) and the control table editor (MDCNT) for the appending of temporary
control table edits to a command. It maintains the order of the working
buffer, modifies the data from what MOCNT provides and deletes specified
edits when required.

Method

Input: Upon entry, the command table is contained in the working buffer
and is split into two parts: the commands and any existing temporary edits.
In addition, the processor name and the sequence number of the command to be
edited as well as an indicator showing the existence, or lack, of previous
temporary edits for this command are input through the calling sequence.

Processing: A test is made to determine if edits already exist for
this command. If they do, they may be either retained or deleted. If deletion
is requested, the edits are removed and the remaining edits packed. Control
is returned to MDCMT with a successful edit status. If the edits are to
be retained, they are moved to the top of the temporary edits, their neading
removed, packed and processina is continued as though they were performed
at this time. If no edits existed, or we are retaining them, a search is
made to determine if the processor exists. If it does not, control is
returned to MDCMT immediately after posting an error message. Otherwise,
the revision number of the processor and the length of the default control
table are obtained.

In order to utilize the control table editor the argument specifications
must be brought into the working buffer. Therefore, a portion of the command
table in the buffer is written to the SMT with the name &CMDTB and the specifi-
cations read in to the buffer in their place. A1l arguments are then marked
undefined and control is given to the control table editor (entry MDCNTM).

Upon return from the control table editor, the edits just made are packed
by deleting any duplication in arguments. In addition, specified flags and
data type are placed in the argument label field of the data and the argument

6.1-1

name s placed with the data. A heading is placed "on top" of the edits
which consists of the sequence number of this command, the revision number,
number of edits and the length (in words) of the edits.

That portion of the command table which was written to the SMT upon
entry is retrieved and placed back in the working buffer. The entry in
the SMT for &CMDTB is deleted and control is returned to MDCMT.

Output: The only outputs from MDCMNT are a status flag indicating
how successful the edits were and any new edits made. The working buffer
remains split. If the user has entered "up arrow" (i) while under MDCMNT
control, the directive entered is contained in a prompting buffer in the
calling sequence and the status flag is set to so indicate.

6.1-2

USAGE
ENTRY MBCMNT
CALL MDCMNT {(PNAME,SEQNO,FLAG,INPUT ,STAT)

ARGMY 1/Q TYPE bIM DEFINITION

PNAME H 1 1 THIS 1S THE PROCESSOR NAME FOR WHICH
TEMPORARY EDITS ARE To BE MADE.

SEQNO I ! 1 THIS 1S THE SEQUENCE NUMBER OF THE

COMMAND TO WHICH 'YEMPORARY EDITS ARE
TO BE MADE.
FLAG I 1 1 TH1S IS AN INDI!CATOR WHICH DETERMINES
THE PRESENCE OF PREVIQUS TEMPORARY
EDITS: =0,Ng PREVIOUS EDITS
=l ,PREVIOUS Ep!TS DO EXIST BUT
RETAIN THEM
22 ,PREVIOUS EDITS EXIST BUTY
DELETE THEM,
INPUT 0 | 50 THIS BUFFER WILL CcONTAIN THE
DIRECTIVE ENTERED BY THE USER SHOULD
HE TERMINATE EDITING BY ENTERING AN
UPARROW
STAT 0 1 1 THIS IS AN INDICATION OF WHAT
GCCYRRED IN MDCMNT?
=1 ,ERROR OCCURRED IN READING OR
WRITING A FILE OR PNAME DOES
MOT EX1ST
80, TEMPORARY ED]TS PERFQRMED
SUCCESSFuULLY
-wm] JCONTROL TABLE EDITOR (MDCNTM)
ENCOUNTERED AN ERROR wHILE
DOING EDITS
=2 yWORKING BUFFER QVERFLOW.0R
USER ENTERED UPARROW (%)

EXTERNAL REFERENCES
MDCNTHM
MDELET
MDGET
MDGETC
MDPUT
SEARCH

DIAGNOSTICS

¢eEDCNT ERROR
THE CONTROL TABLE EDITOR HAS ENCOUNTERED AN ERROR
WHILE DOING THE EDITS (STAT==1)

esPROCESSOR NAME es,see¢ NOT FOUND
THE PROCESSOR NAME SPECIFIED COULp NOT BE FOUND IN
PROTAB (STAT=1)

#eUNABLE TO READ DEFAULT CONTROL TABLE
WHEN ATTEMPTING TO READ THE ARGUMENT SPECS FRCM THIS
PROCESSORS DEFAULT CONTROL TABLE A FATAL ERROR
OCCURRED (STAT=1)

eseUNABLE YO READ SMT
ATTEMPTING TO READ THE COMMAND TABLE FROM THE SMY
RESULTED IN A FATAL ERROR (STaATmi)

ealUNABLE TO WRITE To SMT

6.1-3 RYPRODUCIBILITY OF THH
ORIGINAL PAGE IS POOR

AN ERROR OCCURED WHMEN WRITING THE COMMAND TABLE TO
THE SMT (STAT=1)

seWORKING BUFFER OVERFLOWSEDITING ABORTED
THE USER HAg ATTEMPTED 70 MAKE T00 MANY EDl!ys AND
THERE 1S NOT ENOUGH RQOM IN THE WQRKING BUFFER FOR
THEM (STAT=2)

se~aNO TEMPORARY EDITS PgRFORMgp~=te
THIS MESSAGE 0CCURS WHEN ANY OF THE AgOvVE ERRORsS

GCCUR,
EXTERNAL STORAGE
NONE
BLANK COMMON
VARB 170
PBLEN I
PROTAB !

COMMON / HMDBUFF /
BDATA 1,0
DsiiE 0
L] Is0

6.1-4

MDCMNT

Has this

processor been

edited
rd

No

Should No

the edits be

Delete edits for

l this processor

kept
?

Yes

// SEARCH \\ Move edits to top of
Scan PROTAB for edit table, delete
processor name heading and pack
edit table
Was Ho STAT = 1 Vg
name fTound i Output error RET
? message S——
!
Obtain revision number,
Default Control Table
length and determine if
length > 68. If so set
LENGTH = 68.
1
/ MDPUT \
Put first "length" words
of command table into SMT
to make room for controtl
-table {into &CMIBL)
Was -
' tlo STAT = 1
'PuUT Qutput errar
successful message
?
/ HDGETC \
Get arqument
specifications
for control table
No STAT = 1
Qutput error
message

Yes

URN ,

HDCHNT Flow Diagram Page 17of 2

6.1-5

Mark all arguments
'UNDEFINED®

]
/ HDCNTH \

Call control table editor
to prompt for edits,
process them and place
them in the working buffer

Was Did Ho STAT = -1

editing user input Qutput error
successful ! message
?
Bid STAT = 2, -

user make
edits
?

Yes

Delete repeated arguments Was Yes STAT = 2
and append heading, adjust working buffer Output error
BDATA and DSIZE averflowed ressage

?

o

]

/ HMDBET N\

Retrieve first
portion of command
tabhle from SMT

Was lo STAT = 1

'GET! Output error
successful message
?
Yes
|
/ HOELET N

Delete entry in
. SHT for &CHTBL
{ memum)

MDCHNT Flow Diagram Page 2 of 2

REPRODUCIBILITY OF THH
ORIGINAL PAGE IS PoOR

6.1-6

MDCMT - Command Table Editor

MDCMT is the driving routine of the command table editor. Its primary
function is to interact with the user at the command level to allow him
to build, or modify, command tables or to append temporary edits to the
control table of an existing command.

Method

Input: The EDCMT directive, with its optional fields, is the only input
to MDCMT. The submonitor calls MDCMT with this directive in the prompting
buffer after it has been processed by MDSCAN.

Processing: MDCMT interprets the input directive and determines what
fields are present. If needed, it obtains & requested command table from
the SMT and, in any event, begins prompting the user to determine what
options are to be performed. The user may perform any of four options:
1ist, number, delete or enter a command.

The Tist option allows the user to 1ist all, or a specified portion, of
a command table. The user performs this by entering LIST START,END where
START is the beginning sequence number to start listing from and END is the
last sequence number to be listed. IF neither START nor END is input the
entire command table js 1isted. MDCMT determines if both START and END are
existing commands and, if not, informs the user of such. If the commands
can be Tisted, MDCMT calls MDCMTL to perform the 1list. If any of the Tisted
commands have temporary control table edits appended to them, the edits
are listed immediately following the command by MDCMTL. After completing
this option MDCMT again prompts the user to allow him to perform another
option.

The number option is performed by the user simply entering NUMBER. At
this time MDCMT renumbers all commands in the table. The first command is
given sequence number 100 and each successive command is 100.more than the
command preceding it. Any temporary control table edits that exist are
also renumbered to retain the carrelation between the edit and the command.
After completion the user is again prompted to allow him to request another
service.

6.2-1

The user performs the delete function by entering -START,END where
START is the sequence number from which to begin deleting and END is the
sequence number of the Tast command to delete. If a one or both of the
sequence numbers do not exist, the user is notified of such and reprompted.
If the function can be performed, all the commands between, and including, -
START and END are deleted as are any temporary edits which existed for a
deleted command. Once again, the user is prompted, upon completion, for
another opticn.

The command option allows the user to add new, or modify existing,
commands. MDCMT automatically prompts with sequence numbers anytime the
user is building a new table or begins inserting commands in the table past
the last one currently in the tabie. In other cases the user is prompted
only with #. The prompted sequence number will be modulo 100 and will be 100
greater than the last automatically prompted command. The user terminates
the automatic prompting by depression of carriage return without entering
a command. At this time the user is prompted with # to allew him to insert
new commands, modify existing ones or perform any of the options described
above. If the user modifies a command which has temporary edits appended,
the edits are deleted. The user specifies temporary edits by appending a
colon (:) to the control tabie name present in the command. Upon completion
of editing, the command table is sorted, packed and placed into the SMT
and assigned the name provided by the user, or &MDTB if no name was provided.

Qutput: If the user terminates the command table editing normally
(i.e., depresses carriage return after being prompted with #) a status flag
(indicating normal completion) is the only output. However, if the user
terminates by entering "up arrow" (1) and enters a directive, not only is
a status flag indicating this fact output, but also the prompting buffer
containing the directive is output to the submonitor (MDSMON).

6.2-2

Length

0 7

15 17

ig 19 35
Number of Commands Number of Edits
{NCHDS) (NEDITS)
- 4
= o - Contral
Sequence Humber E"E 5 Table Type

Processor ‘Hame

.Cuntrol Table Name

Command Table Format (Packed)

6.2-3

-+
E=| £ Contral
Sequence Humber EE 5 Table Type
Processor Name
Control Table Name
L
L J
L]
Sequence Number Revision flumber of
eque 15 Number 23 Arguments
Length (in words) of This Edit
Data Argument :
CF | Pl Size
3 5 Type 12 Label 18 1
Argument Identifier
Data
Data Argument :
CF Pl Type Label 5‘232
Argument Identifier
Data
.
®
)
Revision Number of
Sequence tlumber fumber Arguments
Length
.
®
*

Heading

Command
No. 1

Command
No. 2

Temporary
Edit 1

S'iZe-I

Size2

Temporary
Edit 2

THR
RODUCIBILITY oF
%EE)GINAT” PAGE IS POOR

Command Table Definitions

Commands: Total of 3 * NCMDS + 1 words

Print Flag - A flag indicating the level of Control Table print at
execution.

Edit ~ Indicates the presence of temporary edits for this
command.
Temporary Edits
CF - Completion flag;

= 0 Argument is currently undefined
= 1 Incomplete

2 Complete
P - Print flag;
= 0 Argument not to be printed at execution time
= 1 Printed

0 Immediate data (=)

1 - Indicator:
= 1 Execution time data (@)

6.2-4

USAGE
ENTRy MDCHMT

CALL MDCMY { INPUT,STATUS)
ARGMT 1,0 TYPE DIN DEFINITION

INPUT 170 1 50 UPON ENTRY THIS BUFFER CONTAINS THE
COMMAND {SCANNED) 1EDCMT tOLDNAME),
{(NEWNAME) . [T 1S USED INTERNALLY AS
A PROMPTING BUFFER AND IS AN OUTRUT
ONLY WHEN THE USER ENTERS A NEW
DIRECTIVE WHILE MpCMT 1S PROMPTING

STATUS .0 1 1 THIS VARIABLE IS QONLY USED WHEN THE

USER INPUTS A NEW DIRECTIVE WHILE
MDCMT IS IN CONTRoLe §T TELLS MDSMON
A DIRECTIVE HAS BFEN gNTERED,
EXTERNAL REFERENCES '

MDCHMNT

MDCHTL,

MDCMTS

MDGET

MDPRMT

MDPUT

MDSPLYT

MDVCMD

SORT!

DJAGNOSTICS
se*COMMAND TABLE COyYLD NOT BE SAVED
THE NAMED COMMAND TABLE COULD NOT BE INSERTED
IN THE SMT.
#co®e0reee IS NOT AN EXISTING COMMAND TABLE
THE USER HAS ENTERED THE NAME OF A COMMAND TABLE TO
BE MODIFIED WHICH COULD NOT BE FOUND IN THE SMTs
¢38SYNTAX ERROR
THE USER HAS ENTERED INCORRECT SYNTAX FOR ONE OF
THE OPTIQONS AVAILABLE UNDER THE EDCMT DIRECTIVE,
¢sSUNDEFINED SEQUENCE NUMBER
THE USER HAS SELECTED THE LIST OPTION BUT ONE,OR
BOTH, OF THE SEQUENCE NUMBERS HE HAS {NPUT pOES. NOT
EXIST.
eeWQRKING BUFFER OVERFLOW==EDITING ABORTED. COMMAND TaBLE
vesoss SAVED BUT MAY NOT B8E COMPLETE
THE USERS MODIFICATIONS REQUIRED THAT MORE SPACE THAN
IS AVAILABLE BE USEDe THE TABLE 5 SAVED BUT SHOULD
BE USED ONLYy AFTER BEING COMPLETELY CMECKED,
EXTERNAL STORAGE
NONE

COMMON / MDBUFF v/
MOLEN | i
BDATA 1/0
DSIZE 1s0

WBUF
REPRODUCIE POOR
COMMON / MDCODE / AL PAGE I8
NAME I ORIGINAL &
INTGR !

6.2-5

£0S
DOLLAR
PERCNT
COMMA
UPARRW
MINUS
POUND

g Gl e W ey b ey

BLANK COMMON
NONE

6.2-6

(Llnii) ’

Interpret the
input cormand
and verify syntax

given Hew name = &CMDTB
?

Yes l

imitialize data
pointers and set
stquence number
= 160

Initialize workirg
bufter with old

Rama's cometand table

Oetput error
message - (RETURH)

Set data pointers
and flags

HDSPLT

Split working
buffer into

commands and
temporary edits

Set prompt buffer

to § to allow user
to insert his own

sequence nuzber

HDEMT Flow DMagram Page 1 of 3

6.2-7

2

Detersine which
B sequence numher
to prompt with
next

Is number Yes
less than maxieoun

number %n table

o

Reset proTpt buffer
to proept with 4

Prompt
next comand

Response
t

Comzand

B/3
= LIST = NUBER = BELETE

Are e 1n

the automatic sequence

¥ prompting loop
?

Sart the cormands by
sequence purber
—

Sert the commands
by sequente number

Sort the coomands
by sequence number

o
Retarming range Beginning with 100, Determine range b
of sequance nts renunber conmands of commands tg
“ers user desfres 1n increments of ba deleted Pack and sort the
1istad 100 command table

If temporary edits

exist, adjust sequence
to reflect the remum-
bering

Get nurber of
cormand to

Y, start LIST

Hrite it to
the SiT (under
new name)

Get starting and
ending command
nurbers {2 calls)

Ho

Output error

Legal message
Get nerber of deletion
comand ta ?
#nd LIST ta Yes
RETURN

Cutput error HDCIRIT

message
Is Belete terporary
the range edits for these
to be listed List the cormands comands
legal® {with edits)
N 3
LIt errgr
ressage belete camands

Sort conmands by
sequence nunber

MDCHT Flow Diagram Page 2 of 3

6.2-8

HE
RODUCIBILITY OF T
1§§}f@m@ PAGE IS POOR

old

Interpret and veri-
fy the command

comand fat in
Nork{nqr buffar

command .replacing

Delete temporary
edits for old
corrdand {1f any)

Hew

| Output error
message

New tia

cormand
2

Insert new command
into tabl

2

temporary edits
to be?made ;

Are
Perform the
temporary

edits

Otherwise

Fatal error or
user entered +

RETURN

HDCHT Flow Diaoram Page 3 of 3

6.2.9

MDCMTL - Command Table Editor

MDCMTL is the routine which is used to print the command table. It is
structured such that all or part of the table may be printed.

Method

Input: A17 input is contained in the calling sequence and consists of:
the number of the command at which the print begins, the number at which to
stop the print, a flag indicating if called by the DUMP directive, if called
by the command table editor or if the temporary edits are not to be listed,
and a buffer containing the command table.

Processing: Each command to be Tisted is broken down into its con-
stituent parts and printed. As each command is printad, a check is made
for the existence of temporary edits. If they do exist and their listing
is desired, each edit is printed individually. The type of each edit is
determined and the required 1isting routine is called to do the print. The
origin of the print request must be determined for, in one instance, the
buffer containing the table is split into commands and edits and, in
another case, thg table is not.

Output: The only output from MDCMTL is the print of the-command table.

6.3-1

USAGE
ENTRY MDCMTL
CALL MDCMTL {(STARTsEND,WBUF ,FLAG)

"KRGMT 1,0 TYPE DI DEFINITION

START 1 1 1 THE NUMBER OQF THE COMMAND AT WHICH
THE PRINT BEGINS,

END 14 I 1 THE NUMgER OF THE cOMMAND AT WHICH
THE PRINT STOPS

wWaUF 1 ! VARB THE BUFFER CONTAINING THE COMMAND
TABLE

FLAG 1 bi 1 AN INDICATION OF THE cALLING ROUTINE:

=0, CALL BY DUMP DI{RECTIVE
=] +CALL By COMMANpD TABRLE EDITOR
2,00 NOT LIST THE TEMP EDITS

EXTERNAL REFERENCES
MDLSTO
MDLSTI
MPLSTR
MOLSTH

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

COMMON / MDBUFF /
VARB 1,0

BDATA I

BLANK COMMON
NONE

LOCAL COMMON

NONE

THE
RODUCIBILITY OF
%gem AT, PAGE IS POOR

6.3-2

MDCMTL

Determine the range
of commands to be
tisted (input)

-

list the
command

Temp
edits exist
and to be
printed
2

Yes

List the temp-
orary edits

No

A1
desired
commands
1is}ed

Yes

RETURN

MDCMTL Flow Diagram

6.3-3

MDCMTS - Command Table Editor

MDCMTS searches the command table for a requested command (by sequence
number) and returns the number of the command corresponding to the sequence
number. If the requested number does not match any in the table, the next
largest command is returned.

Method

Input: ATl input is contained in the calling sequence and is: the
command table, the number of commands in the table and the sequence number
of the requested command.

Processina: If the command table is not empty, it is searched until
a sequence number greater than, or equal to, the requested number is found.
If none is found the number of the last command in the table is returned.
If the found number is not equal to the reguested one, a flag is set indicat-
ing this and the found command's number is returned.

Output: ATT output is through the calling sequence and consists of the
number of the command corresponding to the requested sequence number, or
the number corresponding to the next highest command if the requested number
did not exist, and a flag indicating either an empty command_table, the
requested cormand existed or the requested command did not exist and the
next highest number was returned.

6.4-1

USAGE

ENTRY MDCMsgs

CALL MDCMTS

ARGMT 1,0 TYPE DIM

CMDTAB l
NCMDS I
SEQNO I
CHD 0
STATUS 0

I
1
!

EXTERNAL REFERENCES

NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE

NONE
BLANK COMMON

NONE
LOCAL COMMON

NONE

VARB
1
!

1

(CMDTAB,NCMDS,SEQNO,CHD ,STATUS)

DEFINITION

BUFFER CONTAINING THE COMMAND TABLE
NUMBER oF COMMANDS IN THE TaABLE
SEQUENCE NUMBER OF THE DESIRED
COMMAND
NUMBER OF THE COMMAND CORRESPONDING
TO SEQND {(OR THE NEXT ONE IF SEGNO IS
NOT FOUND)
VAL1DITY OF STATUS:

=0 ,SEQNO FOUND,RETURN 0K

me} NULL COMMAND TABLE

=] ,SEQNO NOT FOUND,NEXT COMMAND

RETURNED

6.4-2

MDALST - Control Table Editor

The purpose of MDALST is to 1ist or list and prompt the values of a
given argument in a control table.

Method

Input: The input to MDALST is the control table, a pointer to the
argument specifications in the contrel table, a pointer to the start of
the data in the control table, the length of the control table, and a flag
designating whether values are to be output only or output and the response
read. This data is passed to MDALST through the calling seguence.

Processing: MDALST calls MDLKUF to locate the argument data for the
requested argument. If MDLKUP cannot locate the argument data, then an
error message is printed stating the variable is undefined. Al71 messages
and displays are output by MDALST for output only requests. For output and
read requests, the data is printed and a response prompted by MDPRMT.

Values for "=" (immediate data) and "8" (execution time data) are pro-
cessed and printed by MDALST or by calls to MDPRMT depending upon the request.
Free field data is printed in octal via MDLSTO, real via MDLSTR and
integer via MDLSTI if output only is requested; otherwise, MDPRMI is called.
Real values are printed by MDLSTR and Hollerith values by MDLSTH, unless
the request was for list and read then MDPRMR is called for real data and
MDPRMH for Hollerith.

Output: The output from MDALST consists of a buffer containing the
user's response as processed by MDSCAN and a status flag. The status flag
indicates the type of return from MDALST (0 = normal, other = undefined
argument).

7.1-1

ushGE

ENTRyY MDALSY

Call MDaLST

CTas
ARGPTR

BDATA
LEN
FLAG
ByFF

STAT

170

I
I

— g

{CTAB ARGPTR BDATA, LEN FLAG BUFF S5TaT)

TYPe pit DEFINITIOUN

i VaRg cONTROL T,agpkE

i 1 INDEX INTD THE CONTROL TagLE ARGUMENT
spECS

1 1 INDEyx INTG THE CONTROL TABLE=
REGINNING OF THE DATA

H PROCESSING FLAG.

I 1 TYPE OF PROCESSING
1=QUTPUT VALUES
2®0UTPUT VALUES AND REApD RESPUNSE

i VvARB BYUFFER CONTAINING USERS RESPUNSE As
PROCESSED BY MDSCAN

i ! STATUS OF PROCESSING

OwNORMAL RETURN
=1® UP ARROwW RESPONSE

EXTERNAL REFERENCES

MDLKUP
MDLSTH
MDLSTI
MDLSTO
MDLSTR
MDPRMH
MpPRH]
MOPRMR
MDPRMT

DIAGNOSTICS
NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

7.1-2

' MDALST ’

Y

/ MDLKUP N\

Find the
data entry

Entry
defined
?

Print message
indicating var-
iable is undefined

—(

@ Scan Integer . Real Hollerith
| Y Y ¥ |
; s Print data Print data Print data
Pr}nt data sgl?zb?::n in integer in real in hollerith
values format format format

Y

Y

Y

Prompting
?

Yes

Place users
response in
output buffer

.

L

(RETURN ,

MDALST Flow Diagram

7.1-3

Print data in
octal, real
and integer
formats

Free

MDCNT - Control Table Editor

MOCNT is the primary subroutine of the control table editor. Its pur-
pose is to prompt the user, accept I/0 specifications, and place these into a
control table. There are two alternate entrances to MDCNT; they are MDEDCN
and MDCMTN. MDEDCN is called to complete a control table being used to execute
a processor or to modify a control table immediately before execution. MDCMTN
is called for temnorary edits.

Method

Input: The input to MDCNT is the buffer containing the user's input
EDCNT directive after it has been processed by MDSCAN. The EDCNT directive
allows the user to interactively create or modify a control table. The
control table contains the argument specifications and data needed for the
execution of a processor. When the EDCNT directive is requested, MDCNT
is called ﬁy the submonitor (MDSMON).

Processing

MDCNT must first validate the syntax of the EDCNT directive and then
interpret the fields. MDGET is called to bring a existing control table
(if specified on the directive) into the working buffer from the SMT. If
an existing control table is not specified, MDGETC is called to read the
default control table into the working buffer. MDSPLT is called to separate

the argument specs and data portions of the control table in the working
buffer.

Depending on the option(s) used on the EDCNT directive, the user is
prompted only for incomplete arguments or also prompted to concur with
existing values of completed arguments. If a "?" is entered to the right
of an "=" or "@" sign, MDDEFN is called to Tist the textual definition of
this argument. MDCONT is called to process all other user responses
and to return a status indicating what is to be prompted next.

If the scan available flag of the control table is set and one or
more arguments are incomplete, the user is prompted to input &SCANX,
&SCANY, and &DATBX. The user may, of course, input or modify any of these

7.2-1

scan control arguments directly.

When the user indicates that no further editing is desired, the com-
plete bit of the control table is set and the control table is packed
(by MDCTPK) and stored into the SMT (by MDPUT).

Entry point MDEDCN is called by the execution controller to complete
and/or modify a control table abcout to be used in a processor execution.
The control table is already in the working buffer, and split when MDEDCN
is called. The control table is not packed and stored into the SMT when
MDEDCN is exited.

Entry point MDCMNT is called by the command table editor to build
temporary edits. The control table is already in the working buffer and
spiit when MDCMNT is called. The "automatic" prompting Toop is not
executed for MDCMNT, rather the user specifies all agrument to be edited.
The control table is not packed and stored into the SMT when MDCMNT is
called.

Qutput: The output from MDCNT, MDEDCN, and MDCMTM consists of a
control table either created or modified and a flag indicating the status
of the routines processing. Since many routines are called, a negative
status will be set by the routine encountering an error; uniess a fatal
error occurs, then the control table editor will set the status flag
indicating this error.

7.2-2

Word 1 Processor Name

.. ¥ of =lalz
Word 2 | Revision #s) arguments| S 1213 Not Used
0 718 12113] 14] 15[16 35
Arg Argument Identifier (alphanumerical name)
Spec.
Entry 1-04m J-0im Type | c I I/0 | CF | Pl I
0 718 15i16 27 282930 3113233 34} 35
Label (Arg. Number) Size
Data }|[0 17118 25
Entry
Data for this Arg.
Label Size
0 17118 35
Data

Control Table

7.2-3

Controtl Table Definitions

Header {first 2 words)
of Arguments: # of arguments in this control table (31)
COMP (Bit 13): Is complete data specified for all arguments

0, complete
1, incomplete

SCBL (Bit 14): Is scan permitted
0, No
1, Yes

SCON (Bit 15): Is scan active
0, No
1, Yes

Argument specifications

Total of 2* # of arguments words., If scan is active 6 additional
words of argument specifications exist.

I-Dim: I-dimension of this argument
J-Dim: J-dimension,

Type: 2000 = user local free

2001 = user local integer
2002 = user local real
etc.

C: Constant flag

0, Normal arg.
1, Constant arg.
2, Scan variable
3, Data box

/0 flag
g, Input
T, Input/output
2, OQutput

Hunm—

CF: Completion flag
= 0, Argument is currently undefined
= 1, Incompiete
= 2, Complete
P: Print flag
= 0, Argument to not be primted at execution time
= 1, Printed

0, Immediate data (=)

I: Indication
= 1, Execution time data (@)

REPRODUCIBILITY OF TR
7.2-4 ORIGINAL PAGE IS PONR

Data (remainder of table consists of variable 1ength_en%ries)
Label: Argument number (relative to first arg.)
Size: # of words (including this header) contained in this data entry
Data: for '=' these are SIZE-1 values

for '@' this is 'NAME' (name of SMT entry where data exists),
type, (2000, 2001, etc.), I-Sub, J-Sub

NOTE: 1In the working buffer, the data area is filled from the bottom up.

If an argument appears in the data area more than once the data located
"highest™ in the data area is used.

7.2-5

USAGE
ENTRY MDCNT

CALL MDCNT (BUFF,STAT)

ARGMT 1/0 TYPE DIM DEFINITION

BQFF 1 i VARg LN?UT QUFFER WHICH HAS BEEN PROCESSED
BY MDSCAN

STAT 0 I 1 STATUS OF MDCNT PROCESSING

O=NORMAL RETUSRN

=1=*FATAL ERROR

NEGmERRQOR STATUS RFTURNED FROM
OTHER SUBROUTIMES CALLED

EXTERNAL REFERENCES
T MDALST
MDCNTS
MDCONT
MDCTPK
MDBEFN

MDGET REPRODUCIBILITY. OF THE

MDGETC B
MDIMS ORIGINAL PAGE IS POO

MDLIST
MOLKUP
MOPRMT
MDPUT

MDSPEC
MDSPLT
SEARCH

DIAGHOSTICS
#ss REVISION NUMBER 0OF PROCESSOR {e.s) DOES NOT MATCH
THAT OF COMTROL TABLE (e,
THE PROCESSOR'S REVISION NUMBER DOES NNnT MATCH
THE REVISION NUMBER IN THE CONTROL TABLE.
#ae GARNING #¢® .es0,0 IS A CONTROL TABLE FOR svease
BUT THIS EDIT ¥1LL PRODUCE A CONTROL TABLE
EDB_3°"‘°

ATCONTROL TABLE wAS REQUESTED FOR AN IMCORRECT
PROCESSOR
se® CONFLICT RETWEEN TYPE OF DATA INPUT AND TYPE QOF seass,
INCORRECT DATA SpECIFIED
#es SUBSCRIPT OUT OF RANGE == NDIMENSION OF cesens IS5 snee,
segs
SURSCRIPT OUTSIDE RANGE
se® SYNTAX ERROR == TRY AGAIN
SYNTAX FERROR FOUND
ese COULD NOT FIND NAME [N LIST == TRY AGAIN !
" DATA FOR NAME COULD NOT BE FOUMD IN IMS§
es® TO0 MUCH DATA FOR sssees ONLY ACCEPTEDs ENDUGH TO FILL
ARRAY
To0 MUCH DATA WAg INPUT
#se NOT A LpGAL ARGID FOR PROCESSOR, assess
INCORRECT ARGUMENT 1D SPECIFIED FOR PRQCESSQR
e®* READ ERROR IN READING FROM ON LINE, STORAGE DEVICE
READ ERROR OCCURRED FROM RAD
*es MAY NOT QUTPUT A GLOBAL IMS (&) VARVABLE

7.2-6

AN IMS VARIABLE #AS REQUESTED FOR OUTPUT
8% ccosuee MAY OMLY BE SPECIFIED WITH =
AN OUTPUT VARTIABLE WAS SPECIFIED AS AN INPUT VARTABLE

F ATAL ERRORS
sa® INVALID SYHTAX wese
AN INVALID SYMTAX WAS SPECIFIED
ee® INVALID PROCESSOR MAME see
THE PROCESSOR NaMg SPECIFIED WaS NOT rFaUNp 1IN PROTapR
@8® ,.eess TOND LARGE FOR WNRKIMG BUFFER
THE CONTROL TABLE FOR PROQOCESSAR esssae [S TO LARGE
FOR THE WORKING BUFFERSe
ase READ ERROR {N MDGET ss#»
READ ERROR OCCURRED IN MDGET
te® COULD NOT FIND econcese IN IHS 2oa
CoULD NOT FIND DATA FOR PROCESSOR NAMER [M [MS
ees COULD NOT FIND seeee, [N SMT wsea
CoULD NOT FIND DaTA FOR PROCESSOR NAMENn IN S$MT
see COULD MOT FIND DEFAULT CONTHOL TARLE FOR sessess
DEFAULT CONTROL TABLE FNR sasees COULD NOT RE FAUND
BY MDGETC
®*ee¢ READ FRROR TRYING TO READ NEFAULT, CONTROL TARLE
A READ ERROR OCCURRED WHILE TRYING TO READ A NDFEFAULT
CnoNTRoOL TABLE
es% 1/0 ERROR WHILE FORMATTING A PRNMRT
AN 1/0 ERROR OCCURRED WHILE FnRMATTING A PROMPT
ess READ ERROR WHILE READING RESPONSE
A READ ERROR OCCURPED WHILE READING A RESPONSE FRaM
MDPRMT
¢«s® WORKING BUFFER OVERFLOW #ww
CONTROL TABLE ®WORKING BUFFER NOT LARGE ENoUGH TO
HOLD DATA
oer UNIDENTIFIABLE STATUS seee FROM, MNDCONT
AN UNIDENTIFIABLE STATUS VALUF WAS RECEIVED FROM
MODCONT
oses FRROR WHILE WRITING Tn ONLINE STORAGE
RAD WRITE FAILED
#6¢ SUB-MONITOR TABLE {SMT) FULL wse
COULD MOT ENTER SMT EMTRY

EXTERNAL STORAGE
NONE

BLANK COMMON
VARB 170

PROTAB 1
PTBLEN

coMMaoN /MDCODE/
ASTRSK 1

AT) 1
BCKSLH I

" COMMA 1
DOLLAR I

EOS H
EQUALS 1

!

PAR
LPA 7.2-7

NAME
PERCNT
QUESMK
RPAR
suss
UPARRW

el e pmd =g P

COMMON /MDBUFF/
BDATA 170

MDLEN 1
SlZE 170
WB 1/0
LOCAL COMMON
VARSB 1,0 TYPE DIM
NONE

LoC

RELADD

7.2-8

DEFINITION

‘ HOCHT ’

Input: Buffer (BUFF)
containing EDCHT directive

Call SEARCH
to find processor
name

1

Isolate processor name and verify
that 1t 1s a valid processor

Call MDGETC to
read default con-
trol tabie 1nto
working buffer

01d

control tabie name

specified
?

Call MDGET to bring
control table into
working buffer

Control
tabie data
on_the

SHT

No

Call MDIMS to
find data in the IMS

Determine level of prompting by
number of *'s on the directive's
image set PRHFEG = 0, T or 2

]

Verify that control table in
working buffer has some
revision number as processor

€all MDSPLT to separate
working buffer into specs
and data areas

®

VDCHT Flow Diagram Page 1 of 4

7.2-%

Entry
HDEDC

Input- Buffer {BUFF) for
usec in prompting the user
and recewving [0 specifi-
catiens

Set PRUFLG = 0 and HTYPE = -1
Indicating that we have
entered via NOEDCH

Baqin prompting after
constant arguments
(if any)

Beqin prompting with
first arqument

Control
table com-
plete?

Call MOCEFH to write
text defining this
argument

Response
]

Increment argu-
ment printer i

Onnnla
of table?
Call HDALST to prompt

with arguments' values
Ho for user concurrence

|
Call MOSPEC Lo extract var-
fous specs of this argqument

=1
(incomplete)

0

/PRHFLG
?

Call MOALST to Tist
arquments' values

{undefined)

HDCHT Flow Diagram (Continued) Page 2 of 4

7.2-10

RODUCIBILITY OF THE
gﬁem@ PAGE 1S POOR

5till in

automatic prompt-

ing mode
?

Mark entry as incomplete
or as undefined. If scan
argument, issue message.

©

Call MIPRNT to prompt
with argid and = or B

Response
?

Call MODEFN to output
definition of this
arqument.

@__ Other

1

Call MDCONT to pracess IO
specification and return

status and subscript(s) of
next prompt

1

Call 1IDCNTS
to return the
various specs
for a given con-
trol table

G Se‘ta:l:-sﬁent Urite abprogriate
c.uzl.p"le{ged?) message(s)

5till n
automitic prompt-
ing mode
?

HDCNT Flow Dragram {Continued)
7.2-1

Page 3 of 4

(MOCNTH }

Ho Have any
args been Teft tncom-
piete and scan
ava11?

®

Call HDPRMT to prompt
with a "\" allowing
user to specify arq. id

Write text explaiming
end of astomatic prompt-

Response
? ing Toop and user options

f

Call MOPRMT to prompt
with &SCAHX

Scan arg Yes Activate scan if not
or data box already on and 1f
specified available
?
Y
S

LS

Urite text explaining
specification of
scan arguments

Set complete indicator for

control table by examining
all arguments

Call MDLKUP to

Entered
locate the data portion . Call MBCTPK to pack
of an argument in a con- thru NDCHT (i.e.,
trol table

ITYPE#-1) the working buffer

Ho i

Call HDPUT to store
contrel table wn the SHT
{ Exit |

HIDCAT Flow Diagram {Continued)

Page 4 of 4
7.2-12

ODUCIBILITY OF THE
@?%E)T‘J \T, PAGE 15 POOR

MDCNTE - Control Table Editor

The purpose of MDCNTE is to procass the values to the right of an
equals sign. It transfers the data values from the input buffer into the
control table contained in the working buffer. MDCNTA is an alternate
entrance and has the same purpose as MDCNTE except it processes value to
the right of an at (@) sign.

Method
Input: The input to MDCNTE consists of the following:

(a) The control table in the working buffer and the index to the data
entry to be filled.

(b) The user's edit line as output by MDSCAN and the index to the
next field in this buffer.

(c) The displacement into this data entry at which the first field
belongs.

(d} The first and second subscript limits.
(e) The argument completion status.
(f) The type of argument from argument specifications.

The input to MDCNTA is the same input as (a), (b), and (f) of MDCNTE plus a
flag designating the I/0 for the argument.

Processing: MDCNTE will update a control table with the values to the
right of an equals on a control table edit. Validity checks will be made
and when an error condition occurs the status flag is set accordingly.

It is verified that values (real, integer, Hollerith or octal) requested
have the correct data type specified, that inserted data may not overflow
the table, and that when a % or $ is requested a name must follow. It is
also verified that subscripts are within their defined limits. There is an
.exception to this test. If the subscript designates the array to be used
as a vector and the user has reversed the subscripts then MDCNTE will allow
the subscript to be processed.

7.3-1

When a variable name is specified, MDGET is called to get the data from
the SMT. If the data is not found in the SMT, MDIMS is called to find the
data in the IMS. If the data exists in neither area, an error condition is
flagged.

There is an alternate entrance, MDCNTA, which updates a control table
with fields on the right side of an at (8) sign on a control table edit. It
sets the data type flag to indicate temporary, user's permanent, or IMS data
into the control table. It also stores the subscripts into the control
table in the working buffer.

Whether the program was entered from MDCNTE or MDCNTA, a check for a
valid end-of-statement is made and the output data flags set before the
subroutine returns to the caller.

Qutput: The output from MDCNTE(A) consists of an asterisk status flag,
a termination indicator, a counter containing the origin displacement from
the first data word to the last data word filled, and a flag indicating
the processing status.

7.3-2

USAGE

ENTRY MDCNTE

CALL MDCNTE (CTAB,CPTR,BUFF,BPTR,DISP,IDIM,JOTH,OMF , TYPE,

ARGMT
CTAB

CcPTR

pUFF
gPTR
DISP

IDIM
JOIM

comMP

TYPE
ASTAT

TERM
COUNT

STATY

ENTRY MDCNTA

ASTAT 2 TERMyCOUNT 4STAT)

1,0 TYPE DIM NEEINITION

1 1 VARB CONTROL TABLE

I ! 1 INDEX TO THE paTa ENTRY T0 neg FILLED

I I VaARg USER'S EpIT LINE a5 OUTPUT gY¥ MpSeaN

I I 1 INDEX TO NEXT FIFLD IN BUFF

1 I 1 DISPLACEMENT {NTO THIS DATA ENTRY AT
#HICH FIRST F1ELD BELOMGS

I ! t 1=DIMENSION, 15T SUBSCRIPT LIMIT

I I 1 J=DIMENSION, 2ND SUBSCRIPYT LIMIT

(IF SINGULARLY DIMENSIONEDs THIS 1>
THE SURBSCRIPT LIMIT)
! 1 L COMPLETION FLAG
22ARGUMENT COMPLETE
NAT EQUAL TO 2=NOT CURRENTLY COMPLETE

i I 1 TYPE OF THIS ARGUMENT (FROM ARGUMENT
SPECS.)

o H 1 ASTERISK STaTus
OuNQ ASTERISK,1®0ONE ¢,2=TWQ 'S

o 1 ! TERMINATION INNICATOR

O=sNO BACKSLASH
1sLINE TERMINATED WITH BACKSLASH

0 I t ONE ORIGIN NISPLACEMENT FROM THE ST
DATA WORD To THE LAST DATA WORD
FILLEDe.

o} I ! RETURN STATUS

IxS1ZE OF DATA IS5 GREATER THAN
"THE MAXIMUM STZE
O=AUGUMENTY cOMPLETE
w 2=INCORRECT DATA TYPg
- 3=T00 MUCH npATA INPUT
= 4=2SUBSCRIPT 0QUT OF RANGE
- S5xSYNTAX ERROR
~ P=READ ERROR FROM RAD
=11 DATA NOT IN IMS

CALL MDCNTA(CTAB+CPTR ,BUFF8PTR,IOFLG,TYPEsASTAT TERM COUNT,

ARGMT

CTAB
CPTR
BUFF
BPTR
10FLAG

TYPE

ASTAT

STAT)
1/0 TYPE DIM DEFINITION
H 1 VARB CONTROL TABLE
1 1 1 INDEX TO THE npATA ENTRY To BE FILLED
1 1 VARB USER'S EDI!T LINE AS OUTPUT gY MDScaAN
. 1 t INDEX TO NEXYT FITELD TN BUFF
I I 1 INPUT/QUTPUT FLAG
O=ARGUMENT 1S INPUT
I=ARGUMENT IS INPUT/0UTPUT
2=ARGUMENT S OuTPUT
1 I ! TYPE OF THIS ARGUMENT (FROM ARGUMENT
SPECSs)}
v} 1 1 ASTERISK STATUS
7.3-3 REPRODUCIBILITY OF THE

ARIGINAT, PAGE 15 POOR

TegRM o’ I
COUNT 0 1

STAT ¢ .1

EXTERNAL REFERENCES
MDGET
MDIMS

DIAGNOSTIcS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

COMMON /MpCOQE/
VARB 170
ASTRSK I
BCKSLH 1
DOLLAR H
£Eos - I
HOLLRH !
INTEGR I
NAME 1
0cTaL 1
PERCNT I
REAL 1
REPEAT I
SuUsBs I

LOCAL CcOMMON

NONE

O=NO ASTERISK,ISONE #,2=TWO »*S
TERMINATION INpICATOR
GaNQO BACKSLASH
1aLINE TERMINATED WITRHR BACKSLASH
ONE ORIGIN DISPLACEMENT FROM THE IST
DATA WORD To THE LAST naTA WORD
FILLED.
RETURN STATUS
I=S1ZE OF DATA IS GREATER THAN
THE MAXTMUM ‘ST2E
O=pAUGUMENT cOMPLETE
= SaSYNTAX pRROR
«10=N0 DATA INPUT=ARGUMENT 1S5 TO RE
MARKED UNREFINED
~12=MAY NOT OUTPUT AN 1MS VARIABLFE
GT O=INCOMPLETE==CNUNT+1 15 THE
NEXT WORpD nF THE ARRAY TO BE
FILLED

7.3-4

HDCNTE

Are Ho Set flag to
argunents arguments
comqgete undefined

Is
value real,
integer, octal, or
Ho11grith

Yes

Set status to
syntax error

Is this No
type valid for

valye
?

Set status
for incorrect
data type

Has Yes

too much data

Set status for
too much data

© ©

nput
?

Mo

Insert data
item into
control table

1

Get next
value

MBCNTE Flow Diagram
7.3-5

Page 1 of 4

Save name for
MDGET call

Is Yes
variable

subscripted
?

Get subscripts
if any

ilo

Call HDGET to
retrieve data
from the SMT

Has
data found in
the SMT

Yes Set status flag to
say words transferred
nopt equal to maximum

Did
the number of words
transferred not equal

the m%ximum

®

Was size of
data found to exceed
maximum space

Yes | Set status flag
for too much data

Call HBLMS to find
data in the IIS

Set status flag
to data that does
not exist in SHT
or IMS

THE
REPRODUCIBILITY OF
ORIGINAL PAGE IS POOR

HOCHTE Flow Diagram (Continued) Page 2 of 4
7.3-6

Is ¥
field a e

subsi:izi,/,//
?

flo

Set status to
subscripts out-
side limits

Ara
subscript(s) within
un;ts

Set repeat
counter

&

Set status to
syntax error

Set counter
for output

Was
status already
set to? error

Is there

data and 15 it

complete
?

Set status to
normal return

tlo

Set status to
no data innut

E/3

Y

‘ RETURN I

HDCNTE Flow Diagram {Continued) Page 3 of 4
7.3-7

G/4

HDCHTA

Is
value equal
h%%

Is
value equal

to §
?

Is
argument
input

?

Yes

¥
Set tvpe in
contral table

Is
next field
a name
?

o

Set type tc
temporary data

Set type to
user's per-
manent data /

Set status flag to
indicate INS var-
iable may not be
output

Set subscriot values
into control table
if there are any

HMDCNTE Flow Diagram (Continued)
7.3-8

Page 4 of 4

MDCNTS - Control Table Editor

The purpose of MDCNTS is to search a given control table for an argu-
ment identifier and return 1its argument specifications.

Method

Input: The input to MDCNTS consists of an argument identifier and
control table,

Processing: MDCNTS searches the control table until an argument
identifier match is found. The entry number of this identifier is saved
as the argument number. The argument number and the control table are passed
to MDSPEC to get the output parameters. '

Qutput: The output from MDCNTS consists of the following control
table items:

Argument number

Type of variable

I-dimension (1st subscript limit)
J-dimension (2nd subscript Timit)
I/0 flag

Completion flag

@ indicator flag

For more detailed information about the control table refer to MDCNT.

7.4-1

USaGE

ENTRY MDCNTS

Cabl MDCNTS (ARGIDICTAB,ARGNUM,TYPE,IDIM,JDIM, IOFLu,COMPL,

ARGMT

ARGID
CTAB
ARGNUM
TYPE
IDIN
JolIM
IoFLG

COMPL

EQUAT

STAT

EXTERINAL REFEREMCES
MDSPEC

DIAGNOSTICS

NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

EQUATs5TAT)

/70 TYPE pIM

l
I
0
o
#]
o
0

Pt g Bty Bed gy T

— e = e e T e

DEFINITION

ARGUMENT IDENTIFICATION

CONTROL TABLE

ARGUHMENT NUMBER

ARGUMENT TYPE

1=DIMENSION, 1ST SUBSCRIPT LIMIT

J=DIMENSION, 2ND SUBSCRIPT LIMIT

INPUT/QUTPUT FLAG

g=INPUT

1= INPUT/OUTPUT

2=0UTPUT

COMPLETION FLAG

O=ARGUMENT |5 CURRENTLY UNDEFINED

I=THIS ARGUMENT [3 INCOMPLETE

2=aTHIS ARGUMENT 1S COMPLETE

EQUAL/AT FLAG)

0=DATA FOR THIS ARGUMENT ARE
IMMEDIATE VALUES (=)

1=THE DATA FOR THIS ARGUMENT ARE
TO BE DETERMINED AT RUN TIME (AT)

STATUS FLAG

O=NURMAL RETURN

=1®c0ULD NOT FIND ARGUMENT leDs

P THE
ODUCIBILITY O
E%%ggﬁéiaPAGE}ESPOOR

7. 4"'2

A/

~argument ID match

MDCNTS

Are there
arguments to
process

Set status flag

for no ID found

?

Does this

Get next ID

the requested ID
?

Call MDSPEC to
extract output
values

|

Set status flag to

indicate processing
normal

RETURN

MDCNTS Flow Diagram

7.4-3

MDCONT - Control Table Editor

The purpose of MDCONT is to process one user generated control table
edit.

Method

Input: The input to MDCONT consists of the user input buffer after
MDSCAN's processing.

Processing: MDCONT sets the completion flag and print flag in the argu-
ment specifications and the label (argument number) and size of data entry
in the data area of the control table. The argument number is found by
calling MDEDIT to locate the argument ID and then using this ID as input to MDCNTS
to locate the argument number.

The size of the data entry is determined when the argument ID has been
previously undefined or the =\@ flag has changed. When this condition occurs,
the data entry size is calculated in two ways. IT the request is for an
equals, the size is determined by the product of the I and J dimensions plus
one. If the request were for an 8 sign, the argument size is set to five. For
an @ sign request it requires one word each for the name, type, I-dimension,
J-dimension, and the label. If the argument ID is defined and the = \@ flag
has not changed then MDLKUP is called to look up the data portion of an argu-
ment in the control table.

MDCONT‘verifies that subscripts are within the maximum size and correctly
used. It also verifies that neither an output argument nor RAD resident data
is specified with an equals. After the validation checks have been passed,
MDCNTE (MDCNTA) is called to update the control table with values on the right
side of an equals sign (at sign).

MDCONT also processes print requests. If arguments from the control table are
requested to be Tisted (denoted by *), MDALST is called to 1ist them. If the
arguments are to also be listed at execution time {denoted by **), then the
print flag is set in the control table.

7.5-1

After the data has been verified, the completion flag is set in the
argument specifications of the control table. The setting of the completion
flag is determined from the status returned from the other subroutines called.
The I and J dimensions are also set into the control table. When processing
is complete a status flag is returned containing the conditions found during
processing.

Qutput: The output from MDCONT consists of a flag containing the pro-
cessing status and the I and J dimensions for subscripts.

7.5-2

USAGE
.. ENYRY MDCONT_ . . -
CALL MDCONT (BUFF,IDIM,JDIM,STATUS)

ARGMT 1,0 TYPE DIn DEFINITION

BUFF i I VARB THE USEr INPUT BUFFER AFTER MDSCAN
m e mm e - - e --PROCESSING- - - S em e e

STATUS ¢ 1 t STATUS gRQM MDCONT PROCESSING

IptH__ 0. _L -1 1D IMENS TON-1.ST. .SURS R IPT L pMiT—- - -

JOIM o I £ J*DIMENSION, 2ND SUgScRIPT LIMIT

e e e e —— = — e e DmENTRY CoMPLETE. - ——- —
v IsENTRY COMPLETE 8UT USER REQUESTED
e _ADDTIONAL OPPORTUNITY FOR..INPUT
» 2uDATA OF INCORRECT TYPE FOUND
me—PROMPT . WITH L1DIMe AND _tJUDIMY .
= 3aTOO0 MUCH DATA INPUT ’
i~ m_H4aSUBSCRIPT OUT. OF -RANGE- ...
= S5xSYNTAX ERROR, PROMPT WITH *IDIMe
- - AND_$uDMY L o
* &mINCQMPLETE AND SHOULD PRDMPT FOR
i ADDITIONAL- VALUES--AT-'IDINY_AND .
. 1JD MY SUBSCRIPTS
. e —— e FoENVALID ARGUMENT-1D -——
. = BeWORKING BUFFER OQVERFLOW
- - w1 0u ARGUMENT-.TO. BE- MARKED- AS —
UNDEFINED
w1 1wCOUL D _NOT ELND--NAME -GLYEN-IN-LIST-.
o1 4mARGUMENT MARKED aAS INCOMPLETE']
={SaRAD RESIDENT SPECIFIED ¥ITH.= ___
m16m0ONLy o INPUT, REPROMPT ARGUMENT

EXTERNAL REFERENCES .

~C MDALST -
MDCNTA ’

- MDCNTIE ... ___

MDCNTS
MDEDLIY _ .

MODLKUP

DIAGNOSTICS
NONE —_

e EXTERNAL STORAGE- —_ e
NONE : :

BLANK COMMON

NONE
\DBUF —————— ERERSDUCIBIELITY -OF-THE
COMMON /MDBUFF/ et 0
MOLEN .} INAL PAGE IS POOR
. BDATA 1,0
- - e 140 -
ComMon /MDCQDE/
—_—— £OS 1
ASTRSK 1
BATCKS] 1

7.5-3

LOCA. COMMON

NONE

7.5-4

MDCONT

Call MDEDIT to verify the
syntax of the edit Tine up
to = \ @ sign and return
the data (argument ID)

Error
found by

MDEDIT
?

Set status flag
to MDEDIT error

No

Call MDCNTS to locate the
argument ID in the control
table and return its
specifications

Error
Is data
found by)
MDCNTS 1ncorr%p1ete

Set status flag for
condition encountered

B/3 -—i

Set I and J
dimension

RETURN

Was

a null list

requested
2

¢/

MDCONT Flow Diagram

7.5-5 Page 1 of 3

Will
the entry exceed
the Q?ffer

Does
a new entry need

to be?bui1t

No

Call MDLKUP to locate Build data
the data for this entry
argument
¥
Set = \ @ flag

Valid |
parameters specified

with equal
sign
7

Call MDCNTE to update values
on right of equals sign (or

MDCNTA for @ sign) r THE
‘ e OCIBLL
gxggégigff'EA&H&'ES'EO(ﬁi
E/3
MDCONT Flow Diagram (Continued)} Page 2 of 3

7.5-6

Request

to print
?

Call MDALST to
Tist values

Set status flag for
data compiete and if
requested, set the
print flag in the
control table

Was
data complete
?

®

Set flag to incomplete
in control tabie

®

MDCONT Flow Diagram (Continued)

7.5-7 Page 3 of 3

MDDEFN - Control Table Editor

MDDEFN, when developed and implemented, will support the "?" feature of
the control level syntax. This feature allows the user to receive an on-
line definition of any argument for the processor heing edited. These
definitions are intended to be kept in an organized RAD data base for quick
access.

7.6-1

MDEDIT --Control Table Editor

The purpose of MDEDIT is to process the left half of an I/0 specifica-
tion (i.e., up through the = or the @) and check its syntax.

Method

Input: The input to MDEDIT is the user's input buffer after MDSCAN -
processing and an index pointing tc the beginning Tocation in this buffer
from where processing is to begin. These values are passed through the
calling sequence.

Processing: MDEDIT verifies the order and sequence of the parameters
for the argument identification, subscripts (I-Dimension ‘and/or J-Dimension),
=", and "@" values. The argument jdentification must follow a "\"; if it
does not, then it must be the first parameter in the buffer. Any condition
other than the above, is flagged as an error.

Single or double subscripts are valid but-they may only be folTowed
by "=". An "=" means the value is the immediate value following equals. If
there were no subscript parameters specified, an "=" or "@" is valid. An "@"
means the value will be determined at execution time. If any other combina-
tions occur (i.e., an "@" after a subscripted value), they will be flagged
as errors.

Output: The output from MDEDIT consists of the argument identifier,
subscript(s) (if any), =/@ flag, index to the next field in the buffer, and
status flag for its processing. Thesé parameters are returned through the
calling sequence.

707"1

USAGE

. —-_ENTRY MDEDIT

CALL MDEDIT (BUFF ,BPTRy)ARGIDsSUplSUBZ+EQUAT,STAT)

ARGHT 1/0 TYPE DIM - DEFINITION
BUFF I 1 VARB USER'S JNpUT BUFFER AFTER MDSCAN
e e e e _PROCESSING _ .. _ _ . ___ . _

BPTR I 1 1 INDEX INTO BUFF

ke ARGID 0 _ H__ 1. _ _ARGUMENT IDENTIFIgR ._ . _. ___
SUB1 0 I 1 1-DIMENSION, 1ST SUBSCRIPT LIMIT

- - ie e - 40-1F NgNg)

suB2 0 H 1 J*DIMENSION, 2ND SUBSCRIPT LIMIT
e e — e - . = - tB.-1F_NaNg} cm s e aee
EQUAT 0 I 1 EQUAL/AY FLAG

- D=EQUAL_ SIGN ENCOUNTERED .

1xAT SIgN ENCOUNTERED

BPYR 0 1 1 . ___INDEX To NEXT_FIELD IN.BUFF_ ___

STAT o i 1 STATUS FLAG FOR MpED]T PROCESSING

— - O=NORMAL _RETURN . _. _
»5®SYNTAX ERROR

EXTERNAL REFERENCES

NONE e
. DlAGNOSTICS . _ _. e e e

NONE

"EXTERNAL STORAGE - -

e MONE_. . ____ e
o BLANK_COMMON

NOQNE —
—. . _CoMMON /MDCODEZ _ _

AT)

BCKSLH_ I __ _

EQUALS | :

NAME L e

SUBS 1

LOCAL COMMON

— REFRODUCIBILITY OF THE

NONE ORuHHAL PAGETSR00R —

7.7-2

MDEDIT

Is this
entry equal

\ ?

Get next
entry

Is this
entry equal to

name
?

Save argument ID

Is entry
a subscript
?

Set error flag

RETURN

Set flag to
= found
Set flag to
@ found

MDEDIT Flow Diagram

7.7"3

Page 1 of 2

Save subscript 1,
I-DIM

Is entry

for a double
subscript

Save- subscript 2,
J=DIM_

Is entry
an = and next
entry not @

MDEDIT Flow Diagram {Continued)

7-7-4
Page 2 of 2 .

MDSPEC - Control Table Editor

The purpose of MDSPEC is to return the argument specifications of a
particular argument of a control table.

Method

Input: The input to MDSPEC is the control table and the argument
number passed through the calling sequence.

Processing: MDSPEC calculates from the argument number the index into
the control table, locates, and stores data for outnut.

Qutput: The output from MDSPEC consists of the following control table
information;

Argument identifier (name)
I-dimension
J-dimension
Type of variable
Constant flag
1/0 flag
" Completion flag-
Print flag
@ indicator flag

T a1

USaGE
ENTRY MDSPEC

CALL MDSPEC (CTagsARGNUM,ARGID,IDIM,JDIH,TYPE,CONST, 10FLG,
COMPL s PRNTFGIEQUAT)

ARGMT 170 TYPE piH DEFINIT[ON

¢Tag 1 I 1 CONTROL TgaplE

ARGNUM] f I ARGUMENT NUMBER

ARGID 0 1 I ARGUMENT IDENTIFIER {NAME)

IDiM 0 [1 I=NDIMENSION, 15T SUgScRIPT LIMIT
JDIM 0 l l J«DIMENSION, 2ND SUBSCKIPT LIiMIT
TYPE o 1 i TYPE OF VARIABLE

CONST o i ! CONSTANT FLAG

laFLeG 0 [3 I/0 FLAG

COMPL 0 [l COMPLETIUN FLAG

PRNTFLG O ! l PRINT FLAG

EQUAT 0 i l w/% INDICATOR

EXTERNAL REFERENCES
NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE
LOCAL COMHMON

NONE

THE
DUCRILITY OF
B WAL PAGE IS POOR

7.8-2

MDALCT - Utility

MDALCT performs the function of the utility processor ALOCAT, i.e.,
allocate an array in the storage monitor table.

Method

Input: The calling arguments to MDALCT are not set up when MDALCT is
entered; however, they are in the working buffer and MDALOC will be called
within MDALCT to set up the arquments. The calling arguments are the Ith
and Jth dimension, type and name of the array.

Processing: MDALOC must be called to set up the calling arguments;
however, the name of the array was specified with an @ sign denoting to MDALOC
to allocate a SMT entry for the array name. This might cause an error;
therefore, MDALCT must modify the name, which is the fourth argument, to
a = sign denoting immediate data. MDALOC is then called to set up the arguments.

The input type representation (R, I, H or F} is changed to the internal
integer form. If the array name with any type exist in the SMT, it is deleted
and a message is printed. In any case, a new SMT entry is allocated for the
-array name, type, and size. The data area for that SMT entry is set to zero.

Qutput: The output from MDALCT %s an entry in the SMT for the array
with the given dimension, name and type with the data area cleared. A status
flag is also output.

801-]

'SAGE .
.. .ENTRY MDALCY -

CALL MDALCT (sSTATUS)

ARGMT 1/0 TYPE DIM

DEFINITION

STATUS o 1 STATUS FLAG ' o

- > 0_NOrRMaAL RETURN __ ___
»>e2 COULD NOT FIND ARRAY NAME

e - 2=y MEMORY NOT AVAILABLE _ e e e e e
»=5 COULD NOT pELETE PREVIOQUS ARRAY
e e o e e NWITH_THE SAME NAME. —_— -
. EXTERNAL REFERENCES __ _ S
MDLKUP .
i e e MDALOC — s et e i e o e e
MDFIND
e o MDELETE _ — e e e o o
MDENTR
DIAGNOSTICS ' .

009090 {TYPFE ,e90¢) DELETED., e

THE ARRAY NAME ALREADY EXISTED. THE SMT ENTRY FOR THE
— oLD_ARRAY NAME. AND _TYPF HAg BEEN_DELETED.

e et i

. _EXTERNAL STORAGE _: - -
NONE

BLANK COMMON '
e VARB. ___140

ARGADD 0O .

—_——LoMMaON /MDBUFF /2
VARB 1/0
BDATA 1
_ DslzZE 1 Igﬂﬁrtm“THE——m*ﬂm
WBUF 1 ODUOB
- : %gggm AL-PAGHE 18 POOR
LOCAL COMMON LS.
oo e e NONE .

8.1-2

http:EI.kD.LE

(MDALCT)

Y
/ MDLKUP \

Pickup data address corres-
ponding to the fourth argu-
ment from ALOCAT

Was
address
fognd

No
Set status
to -2 RETURN

Yes

Set name of array to
allocate to the value
of the dataz address
plus one

|

Mark the fourth argument
specification as = (immed-
iate data) to keep MDALOC
from allocating the array
name

Y
MDALOC \

Set up calling
arguments

Was
MDALOC
succafsful

; RETURN

MDALCT Flow Diagram

Page 1 of 3
8.1-3 g

Pick up first three argu-
ments (IDIM, JDIM, TYPE)
and dstermine size
requirement

|

Set input type represen-
tation to internal integer

form

/ MDFIND '\

Determine if array
name is in SMT

/ MDELET N\

Delete SMT entry
for this array name

defﬁi%on Set status
succqfsful to -5

H
RETURN RODUCIBILITY OF TH
- B IGINAL PAGE IS POOR

MDALCT Flow Diagram {Continued) Page 2 of 3
8.1-4

ya MDENTR \

*Build new SMT entry
and allocate storage
in SMT for array

Was this
an error in
MD%ﬁTR

Yes st status
to -4

Mo i

(RETURN ’

" Zero out data area
for this array

Y

Set status
to zero

Y

(RETURN ’

MDALCT Flow Diagram (Continued)

8.1-5 Page 3 of 3

MDCTPK - Utility

MDCTPK is the routine which packs a control table after it has been
split into two parts, the argument specifications and the data (see also,
MDSPLT).

Method

Input: A1l input to this routine is contained in the common block
MDBUFF and consists of: the length of the working buffer, an index to the
data portion of the control table, the amount (in words) used and the control
table (in the working buffer}.

Processing: A1l arguments with data in the buffer are scanned beginning
with the one which appears "highest" in the buffer. Once an argument's data
has been processed (i.e., moved to the area immediately below the argument
specifications) all subsequent appearances of this argument's data are ignored.
If an argument's data is not complete it is ignored also. Upon completion
of ‘the pack, all data lies immediately below the argument specifications with
an argument's cdata appearing at most once.

Qutput: The output is also contained in common block MDBUFF and consists
of: the packed control table (still in the working buffer) and an index to
the first word of the argument data.

8.2-1

USAGE
ENTRY MDCTPK
CALL MDCTPK

EXTERNAL REFERENCESg
NONEg

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

COMMON / MDBUFF /

VARB 1,0
MDLEN I
BDATA 1
DS1lZE I
WBUF 1

LOCAL COMMON

NONE

8.2-2

MDCTPK

Initialize scan
for argument data

4

Begin scan of each
argument from top down |

Has this ™~

argument previcusTy

Jeen processed
?

Yes

Is this
argument

complete

Pack this argument's
data in the top of
the buffer ,

A1l
arguments in buffer
processed

?

Yes

RETURN

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

MDCTPK Functional Flow Diagram

8.2-3

MDGETC - Utility’

MDGETC is used to input data from files by file name. Each input results
in a single record being placed in a buffer supplied by the calling routine.

Method

Input: The calling routine supplies MDGETC with the name and version
of the file, an option flag specifying the specific action to be taken and
a buffer to receive the data from a single Togical record.

Processinag: There are four options to MDGETC: open the file, input a
single record and close the file; open the file and input the first record;
input subsequent records to an opened file; and close an opened file. On
an open option MDGETC sets up the appropriate control block parameters. For
options using previously opened files the name and version are checked for
match to verify the validity of the current control blocks. Except for the
close option a record is input each time MDGETC is called.

Qutput: A status fiag is returned indicating successful execution, read
error returned from the system services functions, opening of a non-existent
file was attempted, the Togical record was truncated to the buffer length,
or improper input to MDGETC.

8-3"'1

USAGE

ENTRY MDGETC
CALL MDGETC (FILMAM, VER, OPTIONy LENGTH, BUFFER, STATUS}

n”) ARGMT 14,0 TyPE pln DEFINITION
P .
C:/ FILNAM H H SIX CHARACTER FIELD DATA NAWE
VER ! H 1 THO CHARACTER FIELD DavA VE_s5lON
OPTION 1 1 INPUT OpTION FLAG

=1y OPEN FILNpMsVER, [NPUT RrgcORp
InTg BUFFER ApD CLgSE FrLE
=2y OPEn FILNAMJVER aAND INP, T RECORp
INTn BUFFER
=3y INPUT RECORD FROM PREVIAUSLY
OPENED FILNAM,VER
mi4, CLOSE PREVIOUSLY aAPENED
FILNAMSVER
LENGTH | 1 t LENGTH (IN WORDS) OF RECORD TO BE
INPUT INTO BUFFER
BUFFER © LENGTH CONTENTS 0OF [NPUT RECORD
STATUS © { t COMPLETION STATUS
= 0, NORMAL cOMPLETON
==1, FI_NAM_VER NQT FqUND
»=2, RECORD TRUNCATED TU LEnGTH
WORPS ON INPUT
x==3, REaAD ERROR
=«4, INyALID OGPTION
==5, FI NAM,VER QF OPTION 3 OR 4 DOES
NOT MATCH THAT OF FREV,0US CALL

-

EXTERNAL REFERENCES
ECLOSS TO CLOSE FilLgs
ELRSRS TO READ LOGICAL RECORDS
EOPENS TO OPEN FILEg
FWKBKS 7O GENERATE wALK ‘BaCKS AND TERMINATE EXECUTIaN
MDCONY TO CONVERT FROM FIELD DATA To ASCI]

RESTRICTIONS
ALL INPUT FROM A FILE DURING ONgp OPEN MUST BE ACCOMuLISHED
VIA MDGETC,
ONLY ONE OPEN FILE AT A TIME 1S SUPPORTED WITHIN MDgETC

DIAGNOSTICS
NONE

EXTERNAL STORAGE
THE REQUESTED 1,0 ACTIVITIES ARg ACCOMPLISHED ON THf
DESIGNATED FILE

BLANK COMMON
NONE

LOCAL COGMMCN
NONE

THE
RODUCIBILITY OF
?}IE%?GNAL PAGE IS POOR

8.3-2

Enter
HORETC

Save registers
for return logic

Carract o
number of

arguments
]

Yes

Clear return
status to zerg

Option
1 tod

Option
3 or 4

MOCOHY

Convert name and
version to ASCII

Point to buffer,
set length and
clear return code

FUKEKS

Produce wessage,
trace bach and
terminate execution

Set return

status to -4

Hame and
Versign same
as b%fore

Yes

to

Option

Yes

B/2

Set return
status to -5

HDGETE - File Input Gtilvty Routine Functional Flow

8.3-3

Set return
status to -3

file
not gound

Option
3
?

flo

Open file

Tes op

en
error
?

o

Input record

Record
truncation
error

Set return
status fo -2

Yes

Cptron
2or3

ilo

Close fi1le

Set return
status to -1

I

Input
truncation
arror

11e}

@)

REPRODUCIBILITY OF THR
ORICTNAT PAGE IS POOR

Adjust registers
for ratura

" RETURN

HOGETC Flow Dagram (Continued)

8.3-4

Page 2 of 2

MDLIST -~ Utility

MDLIST is called by the submonitor {MDSMON) to list the various data
elements (command tables, control tables and data arrays).

Method

Input: A1] input is through the calling sequence and consists of: -a
buffer containing the data to be listed, the type designator of the data
element, the size (in words) of the data and the data's alphanumeric
identifier.

Processing: If the type designator indicates a data array, the type
is further broken down to determine if the array should be listed in octal,
real, integer or Hollerith format. After performing the indicated tist,
control is returned to the submonitor.

If the type indicated a control table, all argument specifications are
Tisted. Any complete argument also has its current values listed. Control
is then returned to the submonitor.

If a command table is to be 1isted, a heading is priﬁted out and the
routine MDCMTL is celled to.perform the 1ist. Once again, control is returned
to the submonitor.

Qutput: There is no output from MDLIST other than the requested- Tisting.

8.4-1

USAGE

ENTRY MOLIST
CALL MDLIST

ARGMT I1/0 TYPE DIMN

BUFF 1
TYPE I
S1lg I
NAME 1

I

!

I
I

EXTERNAL REFERENCES

HMDALST
MDCMTL
MDLSTH
MDLSTI
MDLSTO
MDLSTR
MDSPEC

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NOMNE

BLANK COMMON

NONE

LOCAL COMMON

NONE

S1ze

1
{
i

(BUFF ,TYPE,SIZE,NAMEg)

DEFINITION

BUFFER CONTAINING DATA ELEMENT TO
BE LISTED

TYPE DESIGNATOR OF pATA ELEMENT
LENGTH [N WORpPS OF paTa ELEMENT
ALPHANUMERIC DESIGNATOR OF paTA
ELEMENT

8.4~2

: MDLIST;

Command Control Data
Table Table Array

MDCMTL Determine number
List the of arguments, size
commands of specifications,

whether complete

l.

/T WMDSPEC \

Obtain speci-
fications for
an argument

'

Print the
specifications
for this argu-
ment

No

Specifications

for all arguments
. printed
?

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Yes

!/ MDALST \

Call once per
argument to
Tist its data

RETURN

MDLIST Flow Diagram
8.4-3 Page 1 of 2

Type
of data
?
lInteger 1}kﬂ1erith l Real 10ther

/[MDLSTI \ / MDLSTH \ / MDLSTR \ /__ MDLSTO \

List the data List the data List the data List the data

- 3 ! !
\L}2r$25898r fgragl1er1th in real format in octal format

RETURN

MDLIST Flow Diagram (Continued)

MDLIST Flow Diagram (Continued)
8.4-4 Page 2 of 2

MDLKUP - Utility

MDLKUP is the routine used to locate the data portion of an argument
in a control table.

Method

Input: The input to MDLKUP is through the calling sequence and consists
of: the argument label of the data to be found, the buffer containing the
control table, an index to the beginning word of the data portion of the control
table and the length (in words) of the control table.

Processing: Fach data sets identifier is compared to .the input argument:
label. When & match is found, the search is terminated and the current
Tocation is returned. If no match was found, an error indication is returned
to the calling routine.

Qutput: A1l output is through the calling sequence and consists of the
data's location in the control table and a status flag. If the status flag
is non-zero the location indicator has no meaning.

8.5-1

USAGE

ENTRY MDPLKUP

catkl MDLKYP

ARGMT

ANUHN
WaUF
BDATA

LDATA
DATADD
STATUS

EXTERNAL REFERENCES

NONE

DIAGNQSTICS
NONE

EXTERNAL STORAGE

NONE
BLANK COMMON

NONE.
LOCAL COMMON

NONE

I
I
1

I
)
0

1

i

1/0 TYPE DIN

YARB
1

i

1

{ANUM WRUF yBDATALDATADATADD ,STATUS)

DEFINITION

ARGUMENT LABEL TO BE LOCATED
BUFFER CcONTAINING THE CONTRoL TABLE
BEGINNING OF THE pATA PORTION OF THE

. BUFFER

LENGTH{ N WQoRDS) oF THE BUFFER
LoCATION oF THE ARGUMENT DATA
STATUS fFLAG; =0 ,RETURN 0K
B] , ARGUMENT DATA NOT
FOUND

fRERRODUEIBHﬂTY’OF‘THE
ORIGINAL PAGE IS POOR

80 5-2

MDLKUP

Set location
indicator to
first word
of data

Argument
label equal to
Tabe1?here

tlo

Increment location
indicator to next
argument

Has
table length been
excagded

Set status
indicating data
not found

RETURN

MDLKUP Flow Djagram

8.5-3

MDLSTH - Utility Support Routine

This routine will 1ist arbitrary amounts of Hollerith data.

Method

Input: ATl input is through the calling sequence and consists of:
the argument identifier of data of the data being listed, an array contain-
ing the data and the amount of data (in words) to be listed.

Processing: If possible,all data is printed on one line; if not, then
there are 10 words per line. The argument identifier appears on the first
line only,

Qutput: There is no output from this routine other than the listing
of data for the user.

-8.6-1

USAGE
" ENTRy MDLSTH

CALL MD|_ STH{NAME,ARRAY,{ EN}

ARGMT 1,0 TYPE DIy DEFINITION
NAME 1 1 H ARGUMENT NAME 0F THE DATA TO BE LISTED
ARRAY 1 i VARSB ARRAY CONTAING THE DaATA TO BE LISTED
LEN 1 1 1 AMOUNT{In WORDS) To BE LISTEp

EXTERNAL REFERENCES
NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE
LOCAL COMMON

NONE

8.6-2

MDLSTI - Utility Support Routine

This routine will 1ist arbitrary amounts of integer data.

Method

Input: ATl input is through the calling sequence and consists of:
the argument jdentifier of data of the data being listed, an array contain-
ing the data and the amount of data (in words) to be listed.

Processing: If possible,all data is printed on one line; if not, then
there are 6 words per line. The argument identifier appears on the first
Tine only.

Output: There is no output from this routine other than the 1listing
of data for the user.

8.7-1

USAGE
ENTRY MDLSTI

CALL MDLSTI(NAME ,ARRAY,LEN)

ARGMT 1/0 TYPE DiN DEFINITION

NAME 1 H 1 ARGUMENT NaME OF THE paTa TO BE LISTED
ARRAY I I VARB ARRAY CONTAING THE DATA TO BE LISTED
LEN 1 1 1 AMOUNT{IN WORDS) To pE LISTED

EXTERNAL REFERENCES
NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NQNE

BLANK COMMON
NONE
LOCAL COMMON

NONE

8.7-2

MDLSTO - Utility Support Routine

This routine will Tlist arbitrary amounts of octal data.
Method

Input: A1l input is through the calling sequence and consists of:
the argument identifier of data of the data being listed, an array contain-
ing the data and the amount of data (in words) to be listed.

Processing: If possible, all data is printed on one iine; if not, then
there are 4 words per line. The argument identifier appears on the first
iine only.

Qutput: There is no output from this routine other than the Tisting
of data for the user.

8.8-1

USAGE

ENTRY MDLSTO

CALL MDLSTC(NAME ,ARRAY.LEN}

ARGMT 1,0 TyPE DIM

NAME H I 1
ARRAY I FREE VARB
LEN H I !

EXTERNAL REFERENCES
NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE
LOCAL COMMON

NONE

DEFINITION
ARGUMENT NAME OF THE DATA TO BE LISTED

ARRAY CONTAING THE DATA TO BE LISTED
AMOUNT(IN WORDS) T0 BE LISTED

8.8-2

MDLSTR - Utility Support Routine

This routine will list arbitrary amounts of real data.

Method

Input: A1l input is through the calling sequence and consists of:
the argument identifier of data of the data being listed, an array contain-
ing the data and the amount of data (in words) to be 1isted.

Processing: If possible, all data is printed on one Tine; if not, then
there are 4 words per line. The argument identifier appears on the first
Tine only.

Qutput: There is no output from this routine other than the listing
of data for the user.

8.9-1

USAGE
ENTRY MDLSTR
CALL MDLSTR(NAME ,ARRAY,LEN)

ARGMT 1,0 YYPE Dly DEFINITION

NAME ! 1 ! ARGUMENT NAME oF THE DATA 7O BE LISTED
ARRAY 1 R VARB ARRAY CONTAING THE DATA TO BE LISTED
LEN I 1 t AMOUNT({IN WORDS) YO0 BE LISTED

EXTERNAL REFERENCES
NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

LOCAL COMMON

8.9-2

MDPUTC - UtiTity

MDPUTC is used to output data to files by file name. Each output gen-
erates a single record from a buffer supplied by the calling routine.

Method

Input: The calling routine suppiies MDPUTC with the name and version
of the file, an option flag specifying the specific action to be taken and a
buffer of data to be output as a single logical record.

Processing: There are four options to MDPUTC: open the file, output
a single record and close the file; open the file and output the first record:
output subsequent records to an opened file; and close an opened fite. On an
open option MDPUTC sets up the appropriate control block parameters. For
options using previously opened files the name and version are checked for
match to verify the validity of the current control blocks. Except for the
close option a record is created in the file each time MDPUTC is called.

Qutput: A status flag is returned indicating successful execution,
write error returned from the system services function or improper input to
MDPUTC.

8.10-1

UsAgE

ENTRY MDPUTC

call MDPUTC (FILNapM, VER, OPTION, LENGTH, BUFFER, SraTUS}

ARGMT
FILNAM

VER
OPTION

LENGTH

BUFFER

STATUS

I/0 TyYyPE DIM

I
H
I

K H
H 1
1 1
1 1
F LENGTH

EXTERNAL REFERENCES

ECLOSS
ELRSWS
ECQPENS
FUWKBKS
MDCONV

RESTRICTIONS

TO0
T0
70
TO
T0

CLOSE FILES
WRITE LOGICAL
OPEN FILES
GENERATE waLK

DEFINITION

SIX CHARACTER FIELD DATA NAWE

TWO CHARACTER FIELD DATA VELSION

QUTPUT oPTIgN FLAG

=1y OPEN FILNAM,VER, oUTPUT BUFFER
AS A SINGLE RECORD AND ,LOSE FILE

82y OPEn FILNAMJVER AND OUTRUT BUFFER

=3y OUTPUT BUFFER INTHn PREV,0USLY
OPENED FILNAM_VER

=4y CLOSE PREVIQUSLY QPENED
FlLnNAMeVER

LENGTH (IN WORDS) OF RECORD TO BE

QUTPUT FROM BUFFER

ARRAY CONTAINING LENGTH #O0R,S TO gE

OUTPUT AS A SINGLE LOGICAL RECORD

INTO FILE FILNAMWSVER

COMPLET 10N STATUS

= 0O, NORMAL COMPLETION

==3, WRI{TE ERROR

m=4, INyALID OPTIgQN

s=5, FILNAM,VER OF OPTION 3 OR 4 DOES

NOT MATCH THAT OF PREV,0US CALL

RECORDS

BACKS AnD TERMINATE EXECUTIAN

CONVERT FROM FIELD DATA TQ ASCI

ALL OUTPUT 7O A FILE DURING ONE OPEN MUST BE aACCOMP, ISHED
CVIA MDPUTC,
ONLY ONE QPEN FILE AT A TIME 1S SUPPORTED WITHIN MDoUTCs

D1AGNOSTICS
NONE

EXTERNAL STORAGE
THE REQUESTED 1/0 AcTIVITIES ARp ACCOMPLISHED ON THg
DESIGNATED FILE

BLANK COMMON

VARB

ace
uce

LOCAL COMMON

NONE

I/0

0
0

oF ‘THE
DUGBﬂlITI
Egggﬁ%Al:PAGEYE&POOR

8.10-2

Enter
MDPUTC

Save reqisters
for return loaic

Ho FWKBKS

Produce message,
trade back and

terminate execution

Correct
number of
arguments
?

Yes
T to 4
?
Yes

Set return
status to -4

Hame and Ho
version same

as before
i

i Set return
status to -5

Yes

MBCONY

Convert name and
version to ASCII

No

Option
4

|
Point to buffer,

set length and
clear return code

c/2

MDPUTC ~ File Dutput Utility Routine Functional Flow

8.10-3 Page 1 of 2

B/1 C/t

Open file

Option
2 q; 3

Ho

Close file

Set return Set return
status to -3 status to zero
| REPRODUCIBILITY OF THE
e ORIGINAL PAGE IS POOR
\

‘ RETURH ’

MDPUTC - File Output Utility Routime Functional Flow (Continued)
8.10-4 Page 2 of 2

MDQUIT - Utility Routine

This routine performs the QUIT directive and determines if the user
desires to save a SMT.

Method
Input: There is no input to this routine.

Processing: Upon entry, the user is prompted to determine if he desires
to save the SMT. If he does not, control is returned to MDSMON where a STOP
statement is executed to terminate the session. If he does desire to save
the SMT, all entries prefixed by $ and % are deleted, these entries residing
in the IMS data base. The entries, &CMDTB and &CONTB, are deleted also.

Control is now passed to MDSMIW for the writing of the SMT to a file. Upon
return from MDSMTW, control is returned to MDSMON where execution is terminated.

Qutput: This routine has no output.

§.11-1

USAGE
ENTRY MOQUIT

CALL MDQUITY

EXTERNAL REFERENCES
MDELET
MDPACK
MOPRMT
MOSMTW

DIAGNOST |¢S
1/0 ERRQR WHILE PROMPTING
A SYNTAR ERROR HAS BEEN ENCOUNTERED WHILE OpTERMINING

IF A FILE Is TO BE SAVEpRe

EXTERNAL STORAGE

NONE

BLANK COMMON
VARSB 1,0
DBSTRT I
NTRY I

COMMON / MDCODE 7/
VARB 1/0

NAME I
LOCAL COMMON

NONE

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

8.11-2

MDQUIT

Does the
user want to save

his SMT
?

MDELET

Delete all $ and %
.entries in the SMT

1

MOPACK

Pack users data
-areas (core & rad)

|

N

/ MDSMTHW \
x Write out /
data area
/ OBEY \

Equate unit11 to
systems default
unit

RETURN

MDQUIT Functional Flow Diagram

8.11-3

MDSMTW -~ Utility Support Routine

MDSMTW is a routine with two entry points. One causes the current SMT
to be written to a file. The other causes a user specified file to be read
into the SMIT.

Method

Input: A buffer is passed through the calling sequence containing the
file name to be read from or written to. If no name is present the first
word of the buffer is -1.

Processing: If the user desires to save a file, either through the SAVE
directive or the QUIT directive, the MDSMTW entry point is called. A check
is made for the presence of a file name and, if not present, the user is asked
to provide one. The user must input a file name. The firs record of the
file, containing information concerning where the data starts, how much data
is present and the maximum size allowed, is written out. The data is then
packed and written as the second record. The file is now closed. Uhile pack-
ing the data, there is a possibility of destroying part of the SMT in core.
Therefora, any portion that was destroyed is restored to the condition it was
in upon entry. Control is now returned to the calling program.

If the user desires to read a previously saved file, either at initial-
ization time or with the RECALL directive, the MDSMIR entry point is called.
Once again, a check is made for the presence of a file name and, if not
present, the user is asked to provide one. If the user is specifying a file
saved under another access code, the access file (MDACCD) is read into the
working buffer to obtain the version the file was saved with. The first
record of the desired file is read into blank common. The record contains
information regarding the attributes of the data. If the file will not fit in
the current configuration the user is informed and the reading process
terminated. Otherwise, the second record is read into blank common, moved
to the bottom and each entry's address field is adjusted. The file is now
closed and control is returned to the calling routine.

Qutput: There is no output from either entry point (other than the file
read/written}.

8.12-1

USAGE

OF THE
PRODUCIBILITY
ENTRY MDSMTW %gIGmAL PAGE IS POOR
CALL MDSMTwW{INPUT)
ARGMT 1/ TYPE DIn DEFINITION
INPUT I I VARB BUFFER CONTAINING THE DIRECTIVE

ENTRY MDSMTR

CALL MDSMTRUINPUT)

INPUT I i VARBR BUFFER C¢cONTAINING THE DIRECTIVE

EXTERNAL REFERENCES

MDGETC
MOPRMT
MDPUTC
MDSPLT

DIAGNOSTICS

s+COULD NOT OPEN AND READ ACCESS FlLEwe
THE USER HAS SPECIFIED A SECONDARY ACCESS CODE OTHER
THAN HIS OWNe IN ATTEMPTING TO READ THE FILE OF
ACCESS CoDEg AN ERROR OCCURED

L XX] COULD NOT OPEN AND READ sSegbher P STATUS E Lee
THE USER SPECIFIED FILE -COULD NOT BE OPENED AND READ
INTO MEMORY,

ee#s COULD NOT OPEN AND WRITE TO 4scees s STATUS = eoe
THE USER HAS ATTEMPYED TO SAVE AN EXISTING FILEe AN
ERROR OQCCURED WHEN THE wRITE WAS ATTEMPTED

ses DATA BASE NOT SAVED/RECOVERED
ANY 1/0 ERROR IN READING OR WRITING A FILE HAS THIS
MESSAGE APFENDED TO IT,

#9s ERROR IN CLOSING sseoeesSTATUS= s, INTEGRITY OF DATA

BASE IS QUESTIDNABLE
WHILE ATTEMPTING TO CLOSE THE USER SPECIFIEpD FILE AN
ERROR OCCURED(READING OQNLY)

#e¢ [/0 ERROR IN WRITING OR CLOSING ssevss STATUSEse, ’

INTEGRITY OF FILE IS QUESTIONABLE
SAME AS PRECEDING EXCEPT WRITE ONLY

sse LENGTH OF SAVED pATA BRASE {seve) EXCEEDS MAXIMUM {eeey) OF

CURRENT CONFIGURATION,
AN ATYEMPT HAS BEEN MADE TO RECOVER A DATA AREA THAT
IS TOO LARGE FOR CURRENT SYSTEM S1Zf

#4¢ READ ERROR IN READING DATA PORTION OF seves 21 STATUS= 444
AN ERROR HAS OCCUREpD WHEN READING THE SE¢ONp RECORD
OF A TWO RECORD FILE,

ese READ ERROR WHILE READING RESPONSE
AN ERROR HAS OCCURED WHILE PROMPTING FOR THE USER?'S
FILE MNAME

###~SECONDARY CODE sassse NOT FOUND
THE USER HAS ATTEMPTED 710 READ A FILE WITH AN INvVaLID
AcCESS CoDE

#2e5YNTAX ERROR==FILE NAME ONLY IS ALLOWED
THE USER HAS ATTEMPTED TO SAVE A FILE TO wWHICH HE HAS
APPENDED AN ACCESS CODE

S+e5YNTAX ERROR=~TRY AGAIN-*%s
THE USER HAS MADE A SYNTAX ERROR WHEN TRYING TO
RECALL A FILE,

8.12-2

EXTERNAL STORAGE
MoACCD FILE CONTAINING ACCESS CODES
VARIOUS OTHER FILES USER SPECIFIES THE NAME OF THE FILE
IN EXTERNAL STORAGE CONTAINING HIS
DATA

BLANK COMMON
VARB 1,0

OBADDR 1
DBHAX {
DBSTRY I
NTRY 1
ACCCDE I
BDGNUM 1
NENTR I
VERS I

COMMON / MDCODBE /

VARB 1/0
NAME I
EOL 1

COMMON / MDBUFF /

VARS 170
4DLEN 1
BODATA 1
DS ZE 1
L{:) 1

LOCAL COMMON

8.12-3

(HDSHTY and HDSMTR)

Prompt
for name

Outout error Ho

message

HOSHIR

MDSHTH

OQutput error flo

message

Hrite out
first record

IPUTI
successful

Outnut error tio

messaqge

Pack the SHT and
compute the lenath
of the second
record

RETURN @

HDSHTW Flow Dhaqram Page 1 of 4

8.12-4

AN

Write out
second record

'PUT!
successful

1

Output error
messaqe

Insure integrity of
SHT by restoring to
original condition

‘ RETURN)

MDSITY Flow Diagram Page 2 of 4

8.12-5

User
recalling
someane
else's
file

Using secondary access
code input find version
file was saved under

Qutput error
message

Output error
message

Output error
message

— Output error
message

‘ RETURN ’

Yes

]

S HDGETC

Read first
record

Size
of ST
too large

MDGETC

Read second
record

HDSHTH Flow Diagram Page 3 of 4

8.12-6

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Qutput error
message

MDSPLT

Move the data
ortion to
ottom of 0B

[

Adjust addr, field
of each SMT entry
and initialize DB
pointers

; Close file ;
e *CLOSE?
successful
Yes

RETURN

1DSHMTH Flow Diagram Page 4 of 4

8.12-7

MDSPLT - Utility Routine

MDSPLT will take a buffer and split it into two parts. It is primarily
used by MDCNT to separate the argument specifications and the data and by
MDCMT to separate the commands and the temporary edits.

Method

Input: ATl input to MDSPLT comes through the calling sequence and con-
sists of a buffer containing the area to be split, the length (in words) of
the area, the size (in words) of the array to be split and an index to the
first word of the array to split off.

Processing: The buffer is separated into two parts. Any unused area
is zeroed. The index to the array split off is calculated for output.

Output: A1l output is through the calling seaquence and is the buffer
containing the split array and an index which points to the first word of
the array split off.

8.13-1

WU SAGE

ENTRY MDSPLT

call MDSPLT

ARGMT
we
MDLEN
S1ZE

BDATA

lwpsMDLEN
TYyPE pIN
! VARSB
1 1
1 1

! 1

EXTERNAL REFERENCES

NONE

DIAGNOSTICS
NONE

EXTERNAL STORAGE

NONE

BLANK COMMON

NONE

LOCAL COMMON

NONE

+S1ZE»BDAT H)
DEFINITION

BUFFER cONTAING DaATA TO BE <PLIT
SIZE(IN WORpS) OF We

SIZE(IN WORpS) OF THE PORTIaN OF DATA
TO BE SPLIT AWAY

{NDEX To THE PORTION oF THE oATA TO
BE SPLIT AWAY

§.13-2

MDTOC - Utility

This routine will perform the TOC directive and, in doing so, generate
a listing of the contents of the SMT.

Method
Input: There is no input to this routine.

Processing: Upon entry, the data areas are packed (MDPACK). If the
SMT is empty, the user is informed of such and informed of the available size.
Control is then returned to the submonitor (MDSMON).

If not empty, each SMT entry is listed. The 1list for each entry
includes: the entry's alphanumeric name, its type, its size, its I-dimension,
and its J-dimension. After all entries are listed, a message is printed
informing the user of how large the SMT area is and how much .of this is
currently being used. Control is now returned to MDSMON.

Qutput: This routine has no output other than the user requested listing
of the SMT.

8.14-1

\USAGE
ENTRy MOTOC

caLl MDTOC

EXTERNAL REFERENCES
MDPACK

DIAGNQSTICS
se® SMT EMPTY

THE SuT To aE LISTED CONTAINS NO ENTRIES
EXTERNAL STORAGE

NGNE

BLANK COMMON
VARB 1,0

DBADDR 1
DBMAX 1
DBSTRT 1
NTRY 1
LOCAL COMMON

NONE

8.14-2

MDTOC

/ MDPACK \

Pack users data
areas (core & rad)

Qutput message
indicatina the
SMT is empty

Extract type, name,
IMS type, size and
I and J dimensions
from the SMT

l

Write a message with
above information

J

Compute amount of SMT
available and amount
used -- print these
values

RETURN

MDTOC Functional Flow Diagram

8.14-3

MDUTIL - Utility Support Routine

4DUTIL performs the utility directives DUMP and DELETE. As more direc-
tives are implemented in the prototype, MDUTIL will take on the expanded
role of performinag them also.

Method

Input: A1l input is through the calling sequence and is: the buffer
containing the directive and an indication of which-directive has been
entered.

Processing: If the DUMP directive has been entered, it is scanned for
correct syntax and the presence of an optional type flag. If the flag is present
the data is listed by this type. If not present, the data is listed by its
internal type. After performing the dump, control is returned to MDSMON.

If the DELETE directive has been entered, the syntax is verified and
the data area deleted. The user is informed of a successful deletion or of

the fact the area does not exist. In either case, control is returned to
MDSMON.

Output: There is no output from MDUTIL other than what the user obtains
by doing the directive.

8:15-1

USAGE
ENTRY MDUTIL
Calt MDUTIL(DIRECT»INPUT)

ARGNT I1+/0 TYPE DIM DEFINITION
DIRECT I I | NUMERICAL VALUE INDICATING THE
DIRECTIVE JUST ENTERED

INPUT ! I VARS BUFFER CONTAING THE DJRECTIVE
EXTERNAL REFERENCES

MDELET

MDGET

MDLIST

DIAGNQSTICS
ee® COULD NOT FIND seeves

THE SPECIFIED ARRAY TO RE DUMPED coutp NOT BE FOUND
IN THE SMTY
eae COULD NOT READ se et e

THE ARRAY To BE DUMPED COULD NOT BE READ
se® INVALID SYNTAX

THE DIRECTIVE CONTAINED A SYNTAX ERROR
MDUTIL EXECUTED

A DIRECIVE NOT YET IMPLEMENTED IN THE MONITgR HAS
BEEN REQUESTEDe CONTROL IS RETURNED To MDSMON WITH
Ng ACTION TAKEN,

EXTERNAL STORAGE
NONE

BLANK COMMON
‘NONE

COMMON s MDCODE /

VARB 1,0

NAME ! UCIBILITY OF °
REPROD OOR

UPPARW { - PAGEIS T

CoMMA t ORIGINAL

COMMON / MDBUFF /

VARB 1,0
MDLEN 1
wh

LOCAL COMMON

NONE

8.15-2

MDUTIL

P Delete

Syntax

Qutput erro
correct P ror
?

message

/ MDELET \

Delete the entry
in the SMT

Use data’s
internal tyne

Determine option
and adjust data type

o

OQutput error
message

Delete
successful
?

Yes

Inform user

of deletion

Out put
st error
message
Y
/ MDGET \
Get the data
from the SMT
Qut put Ho
- error
message
Yes

/ MDLIST N\

List the
data

\

‘ RETURN ’

MDUTIL Flow Diagram

8.15-3

SEARCH - Binary Search Routine

SEARCH performs an examination of an ordered (sorted) input array to
detect the presence of a specified entry, Examination of multiple rows of
the array on a prioritized basis is provided.

Method

Input: SEARCH accepts as input an ordered array of data and a column,
or item, to be compared to the columns of the array. The comparison is based
on a prioritized set of search keys also input.

Processing: The technique used to examine the input array is a binary
search, also known as search by bisection.

Qutput: The column number of a match or a flag indicating no match is
returned.

8.16-1

UsaGLE
ENTRY SEARCH
CALL sSEBEARCH (TAB, lU, JD, NKEY, KEY, FIND, LuC)

ARGMT 170 TYPE pin DEFINITION

TAB \ T+t (0,Jp ARRAY SOKTED BY KEY ROWS TU BE
SEARCHED I[N THOSE RUwS FuR THE
SPECIFIED ENTRY

lo] !) NUMBER OF ROwS IN Taw AND LENGTH gF
FIND

D 1 NUMBER OF CQLUMNS IN TAB

NKE Y I I 1 NUMBER OF SEARCH KEYs IN KEy

N

—

KeY KEY SEARCH KEYS., ROw NUMBERS UF ROwS OFf
TaB AND ENTRIES OF FIND TQ KE
COMPARED (PREFIXED wiTH MINUS Slagn TUO
DESIGNATE ALPHABETIC COMPARISUN} .
THE SEQUENCE OF VALUES IN KEY ESTag=
LISHES THE SEARCHING PRIGRITY, it.,
KEY(1l) INDICATES THE PRIMARY, KEY (2}
TWE MAJOR, ETC.

FINp 1 48 D CoLymMN 70 BE COMPARE, TO CULUMNS OF
TaAB N THE KEY ENTRILS

Lo¢ ¢ 1 1 COLUMN NUMBER OF TAB MATCHING FIND
IN THE KEY ENTRIES OR ZERGC [F NOT
FoUNU

—
—

EXTERNAL REFERENCES
NONE

RESTRICTIUNS
THE INPUT ARRAY OfF MUST BE ALGEBRAICALLY AND/OK ALPHABET[C=
ALLY ORDLREpD IN THE KEY RoWS TO BE SEARCHED.

THE ABSOLUTE VALUES OF Thg SEARCH KEYS MUST CORReSPOND Tu
ROW NUMBERS OF THg INPUT ARRAY

DITAGNOSTICS
IMPROPER VALUE se,ve FOK SEARCH POINTER setes
THE ABSULUTE VALUE OF THE INDICATEDL ELEWENT OF hed 23

ZEROQ,

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

LUCAL COMMON
MONE

F THE
*PRODUCIBILITY o)
ﬁg;GBﬁAl:PAGEZESPOOR
8.16-2

Enter
SEARCH

Y

Compute maximum number
of comparisons and
initialize bounds to
ends of array

3

Y

Calculate midpoint for
use in comparison and
initialize to first
search key

|

Midpoint
Match Perform too high

comparison

i

Switch compare for
next search key

Raise lower bound Lower upper bound

All
keys?USEd above compare point below compare point

Yes

Return pointer to
matching entry

Yes No

Maximum

numher of
compares
?

Signal match
- not found

]

' Return '

Page 1 of 1

SEARCH Functional Flow Diagram
8.16-3

SORT2 - Array Sorting Package

SORT2 and SORT1 provide very fast algebraic and/or alphabetic sorting
of arrays based on any number of sort keys. The sorting is based on the
contents of specified rows of the input array.

Method

Input: The primary inputs are the array to be sorted and an array of
sort keys designating the rows on which to base the sort, their priority
(order of sorting) and which are to be sorted algebraically and which alpha-~
betically. The size of the array and number of sort keys is also specified.
. Entry point SORT2 further provides for the parallel manipulation of an
additional array of data during the sorting of the input array, assuming a
relationship exists between the entries of the two arrays;

Processing: The sorting algorithm is a variation of a splitting technique
described by R. C. Singleton, Communication of the ACM, Volume 12/Number 3/
March 1969, p. 85. SORT2 is an extension and generalized implementation of
the technique.

The method is the sort analogy to a binary search. First the array is
split and reorganized such that all "low" values are placed in the top half
of the array and all "large" values in the bottom. Indices bounding the
bottom are then saved. The top half is then split and again all "low" values
are moved to the top and "large" values to the bottom. Again the indices
of the bottom are saved. The process is continued until a top to be split
contains no more than three values. These are arranged in order and splitting
continues by retrieving a bottom section from the index queue on a Tast in
first out basis. Queue space for the bottom indices is related to the number
of entries by the expression

m= 242+ 20 _ 4

where

m is the maximum number of entries to be sorted
Q is the number of index pairs for which storage is provided

8.17-1

0 is 14 in the present implementation which permits an array of up to 81,919
columns to be sorted.

The technique is illustrated in the following example and the accompany-
ing flow diagram.

-~= Split 3
} Queue 3

=== Split 2

00~ & N &~ W N

(Yol

Queue 2 --- Spiit 4

—
o

}Queue 2

e
—

Number of splits
--- Split 1 Required queue spaces

-t
N
non
~l

[P R R—
o W

--- Split 6

—
[#)]

}Queue 2

—
0~

> Queue T -~ Split 5

o B o B
—~ O W

Quewe 1 --- Split 7

Ny
[AS)

) Queue 1

(g%}
W

Example of Splitting and Queueing an Array of 23 Entries

8.17-2

Qutput: The output from SORTT and SORTZ is the sorted input array.
SORT2 aiso outputs the associated array which was operated on in parallel
with the primary array.

8-17.3

REPRODUCIBILITY OF THE
Ushat ORIGINAL PAGE IS POOR

ENTRY SORT2
CallL SORT2 (Aly Iay Jy MREYS, KEYS, B!, IBy -0, BO}

ARGMT 1,0 TYPE plM DEFINITION

Al I ILyH 1A, ARRAY TO BE SORTED ACCORDING TO TnE
DATA [N KEYS

14 I I i NUMBER OF ROWS [N A} AND AQ

J ! I 1 NUMRER OF COLUMNS IN Al, Bl, AO aND
BO :

NKEYS 1 I NUMBER OF SORT KEYS IN KLYS

KEYS I I NKEYS SQRT KEYS, ROW NUMBERS OF ROWS OF al

ON wWHICH TO SORT (PREFIXED WlTH MINUS
S16N TO OESIGNATE ALPHABLTIC SORT).
THE SEQUENCE OF valurs [N KEYS ESTAp-
L15HeS THE SORTING PRIORITY, [E.,
KeYs{1) INDICATES THE PRIMARY,
KEYS(2) THE MAJOR, EYCs

Bl i FREE (B ARR.Y TO pE OPERATEpD ON |N PARALLEL
WITH Al

I 1 ! 1 NUMgER OF RowS IN Bi AND 80

AD 0 ITsH FA LY SORTED ARRAY af

8O 0 FREE 1844 SORTED aRRAY BI

ENTRY SORT1]
CALL SORT! {ALs las 4, NKEYS, KEYS, aAQ)

ARGMT [/0 TYPE plH DEFINITON

Al [TetH 1A, ARRLY TO BE SORTED ACCORpInNG TO THE
DATA IN KEYS :

la I 1) NUMBER OF ROWS IN Al AND AO

J ! 1 1 NUMgtER OF COLUMNS IN Al AND au

NKEYS i H 1 NUMBER OF SORT KEYS |N sEYS

KEYS] I NKEYS S0RY KEYS. ROW NUMBERS OF ROWS UF 4l
ON wWHICH TO SORT (PREFIXED WITH MINUS
S1GN TO DESIGNATE ALPHABETIC SO0RT).
THE SEQUENCE OF VALULS IN KEYS ESTAg=~
LISHES THE SORTING PRIORITY, lE.,
KEYS(1}) INDICATES THt PRIMARY

] KeYs(2) THE MAJOR, ETCs
AG g I+H tAsJ SORTED ARRAY al

EXTERNAL REFERENCES
NONE

RESTRICTIONS
THE ABSOLUTE VALUgS Of KEYS MUST BE BETWEEN | ANp J INCLUSIVE
THE MAXIMUM NUMBER UOF COLUMNS {VALUE OF J) wHICH CAN BE

ACCOMODATED 1S PRgSENTLY pEFINE AS 40959

DIAGNQSTICS .
INSUFFICIENT [MNDEx STACK STQRAGE FOR SORTING seeee ELEMENTS

AS PRESENTLY CONFIGUREp A QUEUE FOR SAVING SECTIONS TO

BE SORTED wIgL ONLY ACCOMODATE 40959 COLUMNS OF Al
NON<aVALID VALUE o,00¢ FOR SORT KEY ocsesa

THE ABSOLUTE VALUES oF THE SORY XEYS MUST CORRESPOND To

8.17-4

THE ROW NUMBERS OF Ay,

EXTERNAL STORAGE
NONE

BLANK COMMON
NONE

LOCAL COMMON
NONE

8.17-5

Enter
SORTn

Have input arrays
{nto qutput arrays

Sort He Hon-valyd
xey values value ... Stap
\ra',l?id \/_

Yes

Locate midpoint (M}
and order first {F),
{1,and tast (L) points
aiqehriacallv

Insufficient
frdex stack
storage ...

fueve Tower half of
section as new section
by storing pownts M1
and L

Yalue >

value of |1 betweel

F+1 and H-1
?

Salect new midpoint by
reordering dentified,
F and K points

Reset L to N-1

Saction
queued for

Retrieve new F

ard L points
from queve

tin
Sor? q

Value <

ilo Select new midooint by

value of Il betwee reordering identified, Ho

H+l agd L-1 Il and L poants

Yes

Interchange twe
{dentified values

Continue from

noints of

interchange

SORT1 and SORTZ2 Functional Flow Diagram Page 1 of 1

8.17-6

THHE
R RPRODUCIBILITY OF
%gGINAL PAGE IS POOR

DCTMOD - Library Maintenance

DCTMOD 1s a stand alone Fortran program to delete processors from the
MDAS catalog and to modify default control tables of processors in the MDAS
catalog.

Method

Input: The processor catalog file (MDTABL.MD) to have modifications and
deletions must reside on unit one.

Processing: When executed, DCTMOD brings into memory the processor
catalog file from unit one. The INFONET system routine OBEY is.used to open
the file and equate the file MDTABL.MD to unit 1. If there are new processor
entries indicated by the catalog key, a messade is printed stating that the
catalog may not be modified. If there are new processor entries, they must.
be put in the catalog previous to a DCTMOD execution.

After the catalog is in memory, the user is prompted for each processor
to be deleted. For each name input, a search of the catalog (PROTAB) is made.
If no entry was found, the user is requested to input another name. Otherwise
the PROTAB entry corresponding to the name is deleted and the table is then
packed.

After the user has indicated by pressing the carriage return that all
desired processors have been deleted, the user is prompted for each processor
name to modify the default control table. For each name input, a search of
PROTAB is made, If no entry was found, a message is printed and the user is
requested to input another name. Otherwise, MDBULD is called to interface
with the user in modifying the default control table. After the user has
indicated that all desired processor default control tables have been modified,
DCTMOD then writes the updated processor catalog back to unit one. The INFONET
routine OBEY is used to close the file MDTABL.MD equated to unit one. Execution
of BCTMOD is then terminated.

Output: The update processor catalog file (MDTABL.MD) will be placed back
on unit one.

9.1-1

http:MDTABL.MD
http:MDTABL.MD
http:MDTABL.MD

‘ BCTHOD ’

/ OB‘EY \

Call system routine
to open ¥ile MDTABL.MD
on unit one

|

Read the keys for the
processor catalog on
unit one

Are
there any
new processor
ent;les

Yes

Ho

Read the processor
catalog into PROTAB
from unit one

Y

Print message asking for
processor names to delete

|

Print message that
there are new entries
and the catalog may
not be modified

Read processor name to be deleted

Is
procassor name

blank, i.e., have all
processor names

been input

/ SEARCH N\

Search PROTAB for corres-
ponding processor name

Delete processor from

PROTAB and pack

DCTHOD Flow Biagram

9.1-3

Page 1 of 2

A/l

Print message asking for
processor names to modify

|

Read the processor name
to be modified

Is
processor name

blank, i.e., have all
Drocessor names

besn input
?

Rewind unit 1

[

Write the keys for the
processor catalog and

the catalog {PROTAB)
// SEARCH \\ onto unit 1

Search PROTAB for
corresponding pro-
cessor name f

Write end of file on 1

t——

/ QBEY J \

Write message |

€all system routine
to close file MDTABL.MD
on unit 1

/ MOBULD \

/(Interact with user to |

modify default control
table STOP

DCTHOD Flow Diagram {Continued)
g.1-4 Page 2 of 2

OF THb
DUCIBILITY
%gé{&AL PAGE I6 POOR

http:11DTABL.MD

MDADDR - Librarv Maintenance Processor

MDADDR is an extension of the library maintenance programs MDGENR,
OCTMOD and MDUMPC. Its execution is triggered by the boot logic when changes
to the library are detected durina catalog loading (see Boot Logic (MDAS)).
MDADDR integrates these changes into the library catalog and produces an
updated catalog.

Method

Input: The primary inputs to MDADDR are the Tibrary catalog and catalog
control keys as loaded by the boot Togic. The control keys indicate the
original catalog prior to the 1ibrary maintenance activities and the area
containing new processor data. Also input aré the swap area sizes and origin
addresses of the SMT and ephemeris buffer,

Processing: MDADDR and its associated routines are designed for use by
subsystem maintenance personnel, therefore special log-on access codes are
required in order to proceed with the Tibrary maintenance process. Fach new
catalog entry is examined in turn to detevmine whether or not it refers to
the submonitor (MDSMON) or MDADDR itself. As shown in Figure 2 of Appendix
C these data share the First catalog entry and thus are handled separately '
from other catalog entries.

Processor entries are compared with the list of existing cataloged
processors and the default control table maintenance routine MDBULD is invoked
to build or modify a default control table. The catalog data for the processo
is then moved to an appropriate location in the catalog which.is then re-
sorted alphabetically, if necessary.

These- procedures result in reduction in the amount of memory occupied
by the catalog as new data for existing processors are moved into the catalog.
To maximize SMT size the origins of the ephemeris, buffer and SMT are adjusted
to utilize the vacated area.

9.2-1

The finalized catalog is output to the file MDTABL.MD destroying the
previous cataloa. Library maintenance thus completed, MDADDR verifies the

adequacy of the swap area for loading the submonitor and returns to the
resident.

Output: MDADDR outputs the updated catalog to memory and mass storage
and adjust the origins of the ephemeris buffer and SMT as appropriate.

9.2-2

http:MDTABL.MD

USAGE
ENTRY MDADDR
CALL MDADDR

EXTERNAL REFERENCES
MDBULD, MDLOGO, SEARCH, SORT]

DIAGNOSTICS
EXTENT 0F MpDSMON (svenngaenese) 1S TOO LARGE FOR CURRENT MpAS
CONFIGURATION lasuverenees!
THE LOAD MOpPULE OF THE SUBMONITOR REQUIRES A SWAP AREA
LARGER THAN THE ALLOCATED REGIONS, DETERMINE THE
REQUIREMENTS, EDIT MDAS=PNC TO REVISE THE VALUES IRES
AND DRES APPROPRIATELY AND REASSEMBLE AND LINK MpaAS.
MDAS 15 TEMPORARILY UNAVAILABLE DUE TO MAINTENANCE ACTIVIT!ES
PLEASE TRY AGAIN LATER .
SINCE THE CONSTRUCTION AND MQDIFICATION QF DEFAULT
CONTROL TABLES IS NOT CONSIDERED A USER ACTIVITY,
MDADDR PROHIBITS USER ACCESS TO MDAS UNTIL ALL SUCH
ACTIVITIES HaVE gEEN COMPLETED,
MDAS LIBRARY CONTROL TABLE UPDATEpD
THIS MESSAGE SIGNALES THE COMPLETION OF THE CATALOG
MAINTENANCE PROCESS.

EXTERNAL STORAGE
THE MERGED CATALOG IS WRITEN TO FILE MDTABL.MD

BLANK COMMON

VARB 1s0
BADGE !
"DSIZE !
DBSTRY 1/0
1SI12E !

1EPHSY [/0
PROTAB (/0
PTABKY /0

LOCAL COMMON / MDBUFF /
VARB [/0 TYPE DIM LOC RELADD DEFINITION

MDLEN 0

REPRODUCIBILITY OF THE

ORIGINAL PAGE I8 POOR
9.2-3

http:MDTABL.MD

Enter
MDADDR

\
HDLOGO

Perform loa on pro-
cedure to identify
user

Haintenance
access code
?

Initialize catalog
update to first of
rnew entires

AN

1OAS tempovarily
unavailable

e

Entrv
for MDSMOM
?

Store new entry
data into first
half of first
cataloq entrv

Entry
for MDADDR
?

Store new entry
data into second
half of first
catalog entry

SEARCH

Examine cataloa
for match with
riew entry

!
HDBULD

Construct or update
default control
table for processor

HDACDR Library Maintenance Processor Flow Diagram

9.2-4

|

Adjust count of
number of dunli-
cates between old
and new entries

c/2

Page 1 of 2

Uodate

or new
processor

?

Adjust count of
number of dupli-
cates between old
and new entries

tew

c/1

length

¥

Move new entry to
assigned location

HNew
.pracessor
?

Yes

7t Realphabetize

Increment to

Last
of new
entries

No

?

Clear keys to
indicate com-
nlete cataloq

[

Adjust ephemeris and
SHT origins to reflect
reduced size of cataloa

ITY
E{}E}?{ﬁ(}l)‘]()IE§IIJ
(§§§3§3]1q1314 PAGE

Output new
catalog

Is
swap area
large enogugh
forl@SMON

Return to
resident

Mo

1S POOR

Swap area

“DAPDR Library Maintenance Processor Flow Diagram Page 2 of 2

9.2-5

MDBULD - Library Maintenance

The purpose of MDBULD is to build a default control table for the pro-
cessor requested. It also updates the default control table length, argument
definition tength, and processor revision number in the PROTAB.

Method

Input: The input to MDBULD consists of the entry number of the processor
in the PROTAB (system directory) and flag designating whether this processor
is a new or existing one. These inputs are passed through the calling seq-
uence.

Processing: MDBULD, if the default control table does not need modifica-
tion, moves the old PROTAB default contrel table length, argument definitioﬁ
length, and revision number into the new PROTAB entry for the processor. If
the request was for a medification, SEARCH is called to find the processor in
the PROTAB and the values updated.

If a modification was requested for the default control table, then
MDGETC is called to get the existing default control table for the requested
processor. By a series of calls to MDPRMT, the user is prompted for the
infarmation needed to update or build the argument specifications portion of
the default control table.’ The user may input the following parameters for
the default control table:” the revision numBer, number of arguments, and
scan flag for the label field, and the argument identification, I-dimension,
J-dimension, type, constant argument and I/0 flag for each argument. If the
user does not input a value, the value will not be changed or reinitialized.
The data completion and argument completion flags are set in the control table
according to the status of the data.

If there is a request to 1ist the table, MDLIST is called to display
this data. Since the argument specifications and the data are packed together
when residing on disc, MDSPLT is called to separate them for storage in the
working buffer. After the control table has been updated or built, if there
is a request to edit it, MDEDCN is called. If no further modifications are
desired, MDCTPK is called to pack the argument specifications together with
the data before MDPUTC is called to write this information on disc.

9.3-1

Qutput: The output from MDBULD is an updated PROTAB and an updated or
newly built default control table.

9.3-2

USAGE
—— _ENTIRY MDBULD :
CALL MDBULD {(KEY,FLAG)

ARGMT 170 IYPE DIy DEF[NITIQN

KgY 1 1 H KEY IS THE PROTAB ENTRY NUHBER or THE
- - e PROCESS R— -— == = i e s e

FLaG I 1 { FLAG=0 INDICATES THIS 15 & NEW

THIS IS AN EXISTING PROCESSOR

EXTERNAL REFERENCES
_MDCTRK - - — e m o
MDEDCN .
MDOGETYL . _ - e —————
MDLIST

_MDPRMT .. . e e
MDPUTC :)

e MDSPLT. e
) SEARCH)

DIAGNOSTICS

— e rerre]S A DURLICATE- I DENTIFIER-— —_—
A DUPLICATE ARGUMENT IDENTIFIER WAS FOUND

ooe READ ERROR-WHILE READING RFsPoNSE - o .
AN ERROR OCCURRED WHILE PROMPTING

see SESSION CONCLUDED.-me. NO-DEFAULT CONTROLTABLE-GENERATED -

' AN ERROR OCCURRED WHILE pROCESSING THis DEFAULT
———— CONTROL YABLE-NG -BEFAULT CONTROL- T ABLE IS5 GENERATED —- -

EXTERNAL STORAGE

NONE
——BLANK COMMON :

VARB: 1/0 j

PROTAB 1/0 _

PTBLEN | _ N
. COMMON /MDCODE/

EQS 1

INTEG I

NAME 1 ,

REPRODUCIBILITY OF THE
a2 M ——

e COMMON /MDBUEE/ ORIGTNAT PAGE IS PO

BpATA o

DSIZE O

MOLEN 1

w8 0

8.3-3

‘ MDBULD '

Y

Call MDPRHT to ask
if default control
needs modification

llas an
error found by
HMDPRNT

No

{las response

valid and in the

correct form
?

Was
modification
needed
?

tove the default control
table length, argument
definition length, and
revision number into PROTAB

Y

‘ RETURN '

MDBULD Flow Diagram

9.3-4

Page 1 of 4

B/1,2
—Edi fication needed

1

Call MDGETC to get
existing default con-
trol table information

Ho
default control

Did No table exist for this
information - processor - can another
exist processor's table be
?

used
-7

Call prompt No
to ask - should table

be 1isted
?

Prompt processors name
and call SEARCH to find
processor in PROTAB

Call MDLIST to list @
control table

c/4 -
!

Call MDSPLT to split the
argument specifications
from data in the control

table

MDBULD Flow Diagram (Continued) Page 2 of 4
9.3-5

(:E{E:)
--—-[E}i1d default control table

!

Qutput message to
begin building
default control

table

Call MDPRMT to prompt
for one argument
specification

|

Store each of the specifications
as received from prompt into the
control table, Also store the
default control tazble length,
argument definition length, and
nrocessor revision in PROTAB

A1l argument

specifications promoted ~ are

these values to be edited
2

E/4 Yes
|

Call MDEDCN to comolete
the control table located
in the working buffer

oF THE
RuPi UGTBETI‘Y
@ %ggg&L PAGE 18 POOR

MDBULD Flow Diagram (Continued)
9.%-6 Page 3 of 4

Locp through argumentspecifications

Is completion

fiag set in arqument

specifications
?

Set flag for ail
data not complete
for argument

data complete
for arqument

|

!

|

|

' Set flag to aT}
i

L

Catl MOCTPE to
pack control
table data

Cali
MOPRMT to ask if
Control tabie should be
listad

£all HDLIST to
st table

Call
MOPRHT to ask
if furthar editing ic
desired

Call HOPUTC to
store control
table on dise

Call HDSPLT to split
the argument snecifi-
cations from the data
in the control tabie

Call .
MOPRMT to ask if
argument specifications
need to be modified

?

MOBULD Flow Diagram (Continued)

Page 4 of 4

2.3-7

MDGENR -~ Library Maintenance

MDGENR is used to add a processor to the 1ibrary or replace an old
version of a processor with a new one. It records the appropriate infor-
mation in the librarv catalog and generates a file of absolute code for
use by the MDAS resident in loading the processor.

Method

Input: At the time of execution MDGENR is complete and requires no
additional data for updating the Tibrary. It does read the catalog key
record (first record) in order to update it with information pertinent to
the new processor absolute file being generated.

Data relative to the processor involved is assembled into MDGENR
{see USAGE).

Processing: The name and entrv point of the appropriate processor are
assembled into MDGENR followed by a Tink edit which results in a load module
headed by MDGENR with the processor and all supporting routines assigned to
specific memory locations. MDGENR is precisely the size of the resident
I-bank, thus the region assigned to the linked processor corresponds to the
area in the I- and D-banks reserved for the swap area by the resident. The
following figure illustrates the correspondence between MDGENR and MDAS
memory- allocations.

Externally defined symbols in MDENDL are used to determine the extents
of the processor. This data is used to compute the lengths of the procéssor
areas which together with beginning addresses are written to the catalog (see
Figure C-2). The catalog key record is updated with the number of presently
defined new library entries and a pointer to the entry corresponding to a
new version of the MDADDR maintenance processor if one exists.

A new file is output containing two records. The file, named with the
processor name and a version of MD, contains a record each for the processor
I- and D-banks beginning at the origins of the swap area and equal to the
processor lengths.

9.4-1

Qutput: The 1ibrary catalog is updated and a new processor absolute
file created. The swap area extents (Tast required I-bank and D-bank
addresses) necessary for processor loading are output to the terminai.

9.4-2

MDGENR

Processor

Support
Routines

MDENDL

Dummy Blank
Common Reserve

Processor
D-Bank

MDENDL

Relationship Between MDGENR and MDAS Memory Allocations

. — — — ——— ——— =

Resident

I-Bank
Swap
Area

Reserve

—— — — — — — t——

Monitor
Communications
and SMT

D-Bank
Swan
Area

Reserve

g.4-3

USAGE
THERE ARE TWOo PROCENURES F0OR [NVOKING MDGENR. THE FIRST 16 USFD
WHEN PROcgSSORS ,Rg TC BE anpep OR ¢cHaNGEp ANp THE SECONp WHEN
UTILITY PROCESSORS CONTAINED WiTHIN THE SURMONITOR ARE INVOLVERSs
INVOKING MDGENR FOR PROCESSQRS

!EDIT MDGENR MNDGENP

AR T PRONAMI'"seaees',E {sUppL Y prROCESSQR NAME AND
AR T PROENT f4eeaensrE ENTRY NAME, SEE PpSTRICTIONS)
AQ

fSAS,N MDGENP

TGSLINK,WYRITE MOREsMaP MDGENP

AINCLUDE soessee {SUPPLLY REQUIRED BpLOCk DATA MNAME)
AAISEGMENT

AINCLUDE MDENDL

AEXIT

IMDGENP

TCHANGE MDGENFP-PNC ACCESS:REPL

'UNLOAD
IDROP ,EVERY MDGENP

INVOKING MpgENR FOR MON{TOR CONTAINED UTILITY PROCESSORS

'EDIT MDGENR MDGENP

AR T PRONAM!%essese',F (SUPPLY PROCESSOR MAME)
AR T PROENTIMDENDLE

AR A A4|T-l:0gE

AQ

ISAS,N MDGENP

IGSLINK,WRITE MpGENP

!MDGENP

ICHANGE MDGENP=PNC ACCESS:RgPL
!UNLOAD

IDRQP4+EVERY MDGENP

EXTERNAL REFERENCES
ECLOSS TO CLOSE FILES
ECTS0S TO QUTRPUT TO TERMINAL
ELRSRS TO READ LOGICAL RECORDS
ELRSWS TO WRITE LOGICAL RECORDS
EQPENS TO OPEN FILES
EROQOLS TO TERMINATE EXECUTION
ETRUNE TO TRUNCATE FILES
MOENDD TO LOCATE END OF ALLOCATED Dw=paNK
MDENDT TO LOCATE END OF ALLOCATED I=gaANK
SUBSYSTEM PROCESSOR-TO BE ADDED OR MODIFIED

RESTRICTIonNS
¥HEN PERFORMING THE DESIGNATED E0!TS OF MDGENR THp NaMp INM
' MARKS SHOULp gE BLANK FILLED T0 THE RIGHT TO ASSURg SiX
CHARACTERS. THE EDIT REVISIONS SHOULPp ECHO THREE, TWO ANp
ONE LINES OF CODE IN TURN.

REPRODUCIBILITY OF THE
9.4-4 ORIGINAL PAGE IS POOR

http:PRONAM:'...fl

THE FOLLOWING SYMBOLS ARE USgp IN MpGeNR cOpEe aANp THUS MugT
NOT APPEAR AS THE PROCESSAR ENTRY POINT MNAME.
AB=A1S, ADRNAM, BIl-BIl5, 8LDASC, CRES, DOUT, ERMSG, ERROR,

FILNaM, H1, H2, 10UT, Lpoc, LDUCR, M, MDENDD, MDENDI,
MDFSTDs MDFST1, MDGENR, MSG, MS5G2, PTFM, PTPK, TapUFF, TROCH,
TBUCS, UTIL!, UTIL2, XHZ, XM

MDGEMR UPDATES THE CATALOG FILE MNTABL <MD ON WHICH EVER
INFONET LIBRARY [T IS FOUNDs IT WILL NOT WRITE INTO LIRS
UNLESS THAT IS THE ORIGIN OF THE FILE.

DIAGNOSTICS
QUTPUT ERROGRy ERROR ID In Al
AN ERROR HpS OccURRgn pURING OUTPUT OF THe c,Tal0g OR
PROCESSOR FILEe THg SYSTEM RETURM cODE 1S cONTAINED IN
REGISTER At

esves COPIED TO LOAD FILE EXTENT I wevee D eooves
THE DESIGNATED PROCESSOR HAS BEEN OUTPUT TO THE LIRRARY
THE LAST ALLOCATED ANRDRESSES OF THE I= AND D=BANKS ARE

SPECIFIED.

EXTERNAL STORAGE
THE FILE MDTARLWMD IS MOpIFIEn Y0 ReFLECT THE PROCESSOR FILE
CREATED., A FILE NAMEpD AFTER THE PROCESSOR WITH VERSION Mp IS

QUTPUT

BLANK COMMON
NONE

LOCAL COMMON
NONE

9.4-5

http:MDTARL.MD
http:MQTABL.MD

Enter
+ MDGENR

Utility
processor
?

Store lengths and origins
of I- and D-banks in words
two and three of new
entry record

Open catalog file,
add new entry record
to end and close

Reopen catalog file
for update and read
key record (record 1)

MDGENR - Library Haintenance Program
g.4-6 Page 1of 2

Increment
number of
new entries

Set key 3 to
point to new
entry record

Maintenance
processor

HDADDR
?

Rewrite key
record and
close file

Output

error
?

Open a new file
orocessor name ,MD,
autnut T- and
D-bank absolute
code and close

\

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Completion
messaqge and
region extents

Error
message

MDGEMR - Library Maintenance Program {Continued)

9,4-7 Page 2 of 2

MDIMS - IMS Interface

MDIMS is intended to be the primary subroutine of the MDAS/IMS interface
component. Since there is no interface with IMS in this prototype, this com-
ponent does not currently exist. However, one array of data {GLOCON) which
will eventually originate in IMS is emulated by MDIMS.

Method

Input: The input to the IMS interface comnonent will consist of primarily
the name and type of the desired data. Optionally, the subscript(s) specifying
a displacement into the desired array may be input. The cailing cemponent
may also provide the IMS interface component with a buffer for the data re-
trieved as well as an indicator of its length.

Processina: There are two entries into the IMS interface component.
MDIMS is called to retrieve a particular element from IMS, move the data into
a designated buffer, and create an SMT entry for this data element. MDIMST is
called to retrieve a particular data element from IMS and create an SMT entry
for it.

In the current much simplified version of MDIMS only one data element is
"ratrieved” from IMS. The global constants array (GLOCON) is_stored here and
moved to the SMT when either MDIMS or MDIMST is called. ATl other calls to
the existing IMS interface cause an error message and return a status indicat-
ing that the requested element was not found in IMS.

Qutput: When the MDIMS entry is called a buffer is returned containing
the data element requested. When either MDIMS or MDIMS1 are called the SMT
directory and data area are updated via a call to MDPUT in order to enter
the new data element. -A status flag is returned when either entry is used.
The status will indicate data successfully "retrieved" from IMS, data not
found in IMS, or error returned from MDPUT.

10.1-1

USAGE
ENTRy MOIHS

CALL MpIMS {(NpgMe. TYPE, [pIMs JplMs MaX, gUFFy S12Zks 5T4T)

aRanT 170 TYP oIM DEFINITION

NaAME I HOLL 1 NAME OF THE VARIA3LE TU gg ReTRiev=
ED

TYPE I I H TYPE OF THE VARIABLE TU nE ReTKRI[EV=-
ED

1pln { I 1 1-SUBSCRIPT USED TO DETERMINE FirsT

WORD OF RETRIEVED VARJAGLE TO ®E
TRANSFERRED TO HUFF,

JDIM 1 [I J=SUBSCRIPT USED TO UGEITLRMING FIRST
WORD OF RETRIEVED VARIABLE Tu dE
TRANSFERRED TO BUFF.

Mg X 1 I 1 MAX]IMUM NUMBER OF WURDS TO Bt TRaNS=-
FERRED INTO BUFF.

SiZe 0 1 1 NUMBER OF WORDS ACTURLLY TRANSFENRREU
INTO BUFF,

STAT 0 1 1 RETURN STATUS FLAG

= =] =>» YARIABLE HNOT FOUUND IRN IM3

{SGLOCON S THE UNLY AVAlL=
aBLE IMS VaArRiAdLE CQURRENTLY)

m 0 %2> DKo
OTHER => gRROR RETURNED FRUM STURAGe
MONITOR (MDPUT!) e VALUyE Is 1 Lesgs
THAN MDPUT*S STATUS,

ENTRY MDIMSI

CALL MDIMS[(MAME, TYPE, STAT)

NAME i HOLL NAME OF THE vaRIapblt TU BE RETRiLy=~
ED

TYPE I 1 1 TYPE OF THE VaARlaglE TU QYE RETRIev~
ED

STAT) I 1 RETURN STATUS FLAG

= =] => VARIABLE NOT FUUND IN 1MS
{SGLOCON [S5S THE UNLY AVAIL=-
ABLE IMs VARIASLE CuRKENTLY)

= {0 2> 0,K.

OTHeR =»> ERROR RETURNEL FROUM S10RAGE

MONITGR (MDPUT)s VALUE S 1 LESS

THAN MDPUT®*S STATUS,

MOPUT

DIAGNOSTICS

s4e MDIMS CALLED Font TYPE=
INDICATES THAT AN ATTEMPT TO RETRIEVE pAaTA

FROM THE HON=EXISTENT IMS INTERFACE MAS BZEN

MADE
e%¢ MDIMS CALLED=~= NAMEa® TYPE=
IDIH= JD1lMa MAx=

INDICATES THAT AN ATTEMPT 70 RETRIEVE DATA
FROM THE NONSEXISTENT IMS [NTERFACE HAS BEEN
MADE

REPRODUCIEN IT. or a0

R IS POOR
10.1-2 ORIG

EXTERNAL STORAGE
NONE

"8LANK COMMON
NONE

LOCAL COMMON
NONE

10.1-3

MDLOGO - Access Control

MDLOGO is the routine which controls use of the system and provides a
measure of security for user created files. It also creates new entries in
the access files when a user "logs on" the system for the Tirst time.

Method
Input: MDLOGO has no input.

Processina: lipon entry, the user is prompted for an access code. The
access file (MDACCD) is next read into the working buffer. The first record
contains the number of active users and the total number of available codes.
The second record contains the file identifier (version}, the key (index)
to the information file (MDUNIF), and both parts of the accéss code for each
user. In addition it has all unassigned file versions and keyes with space
reserved for future access codes.

If the user has entered a code which matches one in the file, control is
returned to the calling routine and system operation begins. If the code
does not match any in the file, the user is asked if he is a new user. If
he is not, an access code must be entered which matches a previously defined
one. A maximum of three attempts is allowed for the matching of an access
code. When three attempts have failed, execution is terminated and control
returned to the INFONET operation system.

When a user "Togs on" the system for the first time, he is given a two
character code which is used as a file identifier. In addition, he is asked
to provide his name and organization which are inserted into the keyed infor-
mation file (MDUINF). The access file {MDACCD) is sorted alphabetically on
the first portion of the access code. Control is now returned to the calling
routine and actual MDAS execution begins.

Output: AlT output is contained in the intramonitor communications area
of blank common and consists of: the number of active users, the current
users file jdentifier, and both parts of his access code.

11.1-1

Record
Number

1 (2 words)

2
(3*N words)

Record
Number

1 {4 words)

. P et

Contents

Word 1 -Word 2
Number of Maximum #
Active codes of codes
Word 1 Word 2 Word 3

|
Assigned record | 2

in INFO | Char.
File | version
I codes
i (FLDATA)

6 character

field data access
code assigned by

the user

6 character

field data code
consisting of an
organization code
(e.g., T = TRHW,

L = LEC, etc.)
followed by the 5
digits of the users
badge number

/‘_‘_"—_-/

__—___‘_______.—_-—-.___..-—-—"-l
,,,._—-——F—'——'—'_“—‘—'—'—“"'_-__—‘—--__ﬂ_-—-——""—'-—-——

Access Code File (MDACCD.MD)

Words 1 and 2 Word 3 Word 4
Last Mame (max. 12 characters) Initials | Organization
Last Mame Initials | Organization

User Information File (MDUINF.MD)

11.1-2

http:MDUINF.JD
http:MDACCD.MD

USAGE
ENTRY MDLOGO
CALL MDLOGO

EXTERNAL REFERENCES

MDGETC
MOPRMT
MDPUTC
SEARCH
SORT1

RESTRICTIONS

MpLOGO WILL NOT MAINTAIN FILE IMTEGRITY IF TWO,0R MORE, Ng¥W
USERS ATTEMPT To LOG=0ON THE SYSTEM SIMULTANEOUSLY,

DIAGNOSTICS

ACCESS CODE OF eess0e s ssveaee IS NOT UNIQUE===TRY AGAIN
A MNgW USER HaAS ENTERED AN ArceSS ¢ODE OF WHICH ONF
PORTIOY OF THE CODE ALREADY EXISTS

ACCESS TABLE 195 FULL==SOMEONE MUST gp pELETED REFORE ANY NEW

USERS MAY COME ON THE SYSTEHM.,
ALL AVAILABLE SLOTS FOR ACCESS CODES ARE BEING USFD,
EITHER DELETE A USER OR INCREASE THE S1ZE OF THE
AVAILABLE NUMRER OF ACCESS CONRES

ERROR WHEN ATTEMPTING TO READ OR WRITE ACCESS FILE.
AN ERROR CGCCURED IN ACCESSING MDACCD==MEED TO VERIFY
THE VALIDITY OF THE FILE

#1/0 ERROR WHILE PROMPTING FDR ROOKKEEPING INFORMATION

PLEASE NOTIFY 4DAS PROGRAMMING PERSQONNEL
WHILE QUESTIONING FOR A NEW USERS ORGANIZAT]ONM OR
NAME Ao PROMPTIMG FRROR OCCUREp. THE USFR 1S ALLOWED
ON THE SYSTEM AND HIS VERSION 1S CREATED! HOWEVER,
THERE 1S NO ENTRY [N MDUINF pnR THIS USgR.

#sSYNTAX ERROR=ACCESS CODE HAS FORM CCCCCC+ARBRBR

TYPE IN ? FOR A FULL EXPLANATION OF FIELDS
THE USER HAS MADE A SYNTAX ERROR WHEN FNTERING HIS
ACCESS CODE, ENTERING A ? GIVES A FULL EXPLANATION
OF THE NECESSARY SYNTAX

s2SYNTAX ERROR ON INPUTTING NAME
AN ERROR OCCURED 1IN THE SYNTAX 0OF THE USER*S MAME.

EXTERNAL STORAGE

MpDACCD ACCESS FILE CONTAINING FILE VERSIONSS
KEYS TO MDUINF,AND ACCESS CODES
MDUINF INFORMATION FTLE CONTAINING EACH

CURREMT USER*S NAME ANN ORGANIZATION

BLANK COMMON

VARB 1/0
ACCCDE o
BDGNMB 0
NENTR o

VECRFNICIBIITY OF THE
11.1-3 ORI ACTE 1 POOR:

COMMON / MDCODE /

VARB 170
CoOMMA !
E0L I
NAME 1
QsTIon 1

COMHMON / MODBUFF v/
VARH 170

L]:] [
LOCAL COMMON

NONE

11.1-4

Enter
HDLOGO

Input access
code file

Request access
code

uail

entered
T 7

Explain
request

SEARCH

Examine file for
input code

Code and
badge number
found?

Ho

Request verification

Store badge number
and version code

EXIT

3

Add information
record to file

Request user

information

"

of presence of new
user

Yes

Examine file for
duplicate badge
or code

Code and

badge number

unique
?

No

Assign version code
and increment count

!
SORT1

Resort assigned portion
of access code file

Rewrite access
code file

Print error
message

MDLOGO Functional Flow Diagram

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

11.1-5

MDELAC - User Accounting Files Maintenance Program

Purpose

Users of MDAS are uniquely identified by access code and badge
number (see MDLOGO). Two accounting files are maintained which contain
all racessary information regarding the access process. MDELAC is an
auxiliary program which facilitates the maintenance of the files.

Method

Input: The operation to be performed by MDELAC, initialize files,
delete user codes, or 1ist the files, is input following prompts from
the program. .Specification of codes to delete is prampted following
entry of the deletion mode.

Processing

The purpose of the initialization option is to purge the access
code file such that only the MDAS maintenance code remains active.
To accomplish this objective a file with the name MDACCD.MD of the
following structure and content is created:

Word 1 Word 2
Record 1 1 163 - - Number of active codes
and maximum humber of
codes.
L ' bb UPDATE | CC253]
2 ' PE
3 ' PF
4 ' PG
21 ' PY
22 ' PZ
23 ' QE
24 ' Q7 -
167 ' WQ
162 ' WR
163 ' WS

11.2-1

http:MDACCD.MD

In addition, keyed record number one of the keyed file MOUINF.MD
is filled with the following text:

Word 1 llord 2 Word 3 Word 4
MAINTE NANCE blank TRW

The user code deletion option accesses the access code file
MDACCD.MD and, under user control, deletes the requested codes from
the 1ist active access codes. A new file containing the remaining
valid code is output.

Output: Except for the list option, MDELAC outputs the accounting
files MDACCD.MD and MDUINF.MD.

11.2-2

http:MDUINF.MD
http:MDACCD.MD
http:MDACCD.MD
http:MDUINF.MD

USAGE

ENTRY MDELAC
EXECUTE THE GPS COMMAND IMDELAC

THE INPUTS TO MDELAC ARE AS FOLLOWS -

AINIT CAUSES THE ACCOUNTING FILES To BE PURGED ACCEPT FoR
THE MDAS MAINTENANCE ACCESS CoDE

ADEL ENTERS A MODE OF pELETING INDIVIpDUAL USER ACCFSS
CODES V1a THE FOLLOWING INPUTS

CcCcCc CcODE TO BE DELETED
ABBBBBR BADGE NUMBER 0OF USER

#QUIT EXIT CODE DELETION MODE
ALIST DISPLAY THE ENTIRE ACCOUNTING DATA CONTENTS
AQUIT TERMINATE EXECUTIOM OF MDELAC

EXTERNAL REFERENCES
MDGETC, MDPUTC. SEARCH, SORTI

DIAGNOSTICS
USER sesve’enssse NOT IN SYSTEM

THE ACCESS CODE/BADGE NUMRER IS NOT AMONG THE ACTIVE
USER CODES.

ERRUR_JN eveee STATUS = EEEX
MDGETC OR MOPUTC RETIRNED THE INDICATED STATUS. REFERR
TO0 THE APPROPRIATE pocUMENTATION FOR EXPLANATIONM.

EXTERNAL STORAGE o o - o _
MDELAC INPUTS, MODIFIES aAND QUTPUTS THE ACCESS COpE FILE
MDACCD MD AND THE USER IDENTIFICATION FILE MDUINF,MD, UHNIT 1
IS TEMPORARILY ERUATED TQ MDUINFaMD,

BLANK COMMON
NQONE

LOCAL COMMON
NONE

REPRODUCIBILITY OF THE-
ORIGINAL PAGE IS POOR

11.2-3

http:MDUINF.MD

Prompt for
option and
read terminal

|

Invalyd QuIT
Opt
.,____< ption >_,. STO0P

T l DEL LSt
1 |
= Tmeigal | :
3 4’ accounting | I
. Lfdes 1 I |
1 l
[[Detete users |)
l-"-_ —_ __.__.___~_i cade from l

accounting | i
l Lfﬂes _ i

i —odo

Prod
L e sy |
| accounting files

HDELAC Functienal Flow Diagram

1.2-4 Page 1 of 4

HOELAC -1

Set header
record contents
{1 entry, maximum
of 163)

Define first
access code
for [DAS

maintenance

Y

Generate

record number/
version ID words
for the sequence
2/PE, 3/PF
22/PZ, 23/QE

. e 163SHS

Qutput access
code file and
close

Qutput maintenance
jdentificaticn

record and
close file

Initialization
performed

INIT Logic Functional Flew Diagram

1.2-%

Page 2 of 4

Enput access
cade file and
close

User not

in system

"

Prompt for
code to delete
and read

terminal

Deletions
marked

Prompt for SORTI
badge number Reorder Tile
and read to remove
terminal flagged entrmes
SEARCH Adjust count
Examine code of active codes
fi1le for
request
SORTE
Reorder by
o access code
Yes

tlark entry for
deletion and

HDELAC -1

Output neu
access code
file and c¢lose

adjust count

Qutput
eryor

Deletions
performed

DEL Logic Functional Flow Diagram

1.2-

EP’B,ODUGIBH‘

ORIGINAL P

Page 3 of 4

oF THE

Y
AGE 18 POOR

Input access
code file
header record

F/4 E/4

Access code
file 15 empty

Input contents
of code file
and close

Close file

Yes

es

V|

Close
error
Print table
heading Ho
\-._//-

Input user

identification
record for
cade

Print data
for code

ilo All

HDGETC MOPUTC
error error

‘ Stop)

Codes J1sted

b/l

MDELAC -7 LIST Logic Functienal Flow Diagram

11.2-7

Page 4 of 4

Appendix A

Cross Reference of all Monitor Subroutines

L-v

Routine

MDADDR
MDALCT
MDALOC
MDAL ST
MDBCDI
MbBCl1Z2
MDBULD
MDCDAT
MOCMNT
MDCMT

MDCMTG
MDCMTL
MDCMTS
MDCMTV
MDCNT

MDCNTA
MDCNTE
MDCNTM
MDCNTS
MDCONT
MDCONV
MDCTPK
MDDEFN
MDEDCN
MDEDIT
MDELET
MDENDD
MDENDI
MDENDL
MDENTR
MDF IND
MDGET

MDGETC

Referencing Routines

MDSMON .,
MDALCT.
MDCNT .
MDCDAT,
MDSCAN.
DCTMON.
MDSCAN,.
MOCMT .
MDSMON,
MDSMOM o
MDCMT .
MDCMT .
MDSMON,
MDSMON,
MDCONT,
MDCONT .
MDCMNT,
MDALOC.,
_MDCNT .
MDELET,
. MDALOC.
MDCNT .
MBBUL DN,
MDCONT,
MDALCT.

MDALCT,
MDALCT,
MODCMNT .
MDBUL D

MDSMON,
MDCONT .

MDADDR,

MOLIST.
MDCMTG,

MDCNT

MDGETC.
MDBULD,

MDSMON,

MDALOC.,

MDALOC,
MDALOC,
MDCMT
MDCMNT ,

MDLIST,.

MDSMON,
MDSMON,

MDCONT,

MDPRMT,
MOCNT .

MDCMNT .

MDPUT .
MDCMT G,
MDCNT
MOCNT .

MDPUTC,

MDPUT .

MDELET,
MDCNTE .
MOELAC.

MDSMON,

MDQUIT,

MDGETY ,
MDSMON.
MDLOGO.

MDUTIL.

MOPUT .
MDUTIL .
MDSMON.

dHY

Efm;&o,szﬂﬂﬁﬁﬁﬂﬁi

FO0d S1 Ehvd

MDSMON,

MDSMTW.

SMPRTP,

MOIRCD
M) I M5

MDIMS]
MDLIST
MDLKRUP
MDL OGO
MOLSTH
MDLSTI
MDLSTO
MDLSTR
MDOMERG
MDPACK
MDPEK

MDPRMH
MOPRME
MDPRMR
MDPRMT

MDPUT

MDPUTC
MDOUIT
MORADT
MORADO
MOROLL
MDSCAN
MDSMON
MOSMTR
MDSMTW
MDSPEC
MDSPLT
MDSGZB
#OTOC

MOUTIL
MDYCMD

OBEY
SEARCH

MOCNT
MOALOr.
MOBUL NS
MOALCT .
MOADDW
MDALST.
MDALST.
MDALSTS
MOALST.

MOSMON, |

MOENTR.
MOCDAT -
MDALSY .,
MDALST.
MOALST .
LREVFEr,
MDGUIT.
MDALOC .
MDALOC -
MIOISMON «
MDGET .
MOPUT
MDALON.,.
MOPRMT .,
MOAS
MOSMON,
MDGUIT.
MDALOG
MOBLH N,
MOBCDT
HOSMOM.
MDSMON .
MDCOMT .

BCTMON,

DCTMON,

MOCNTE o

MDCNT

MBALOC-'

MDaMON.
MOCMTL &
MDCMTL W
MOCMTL «
MOCMTL .

MOGQUTIT.
MOSCAN,

LRV .
MOSMON,
MOCMNT .
MDBULD.,

HMNSMON,
MDCNT .
MDCMT o
MDCDAT.

MDSHON »

MDADDR,
MDADDR »

MOUTIL S
MDALST.

MOLIST,
MDLUIST.
ML IST.
MBLIST.

MUROLL »

MOALSTS
MOEMTW
MOCMT
MODELAC.

MDCNTS
MDCNT

MDELAG.
MUBULD,

MOCNT

MDTOC »

MDBULD «
MDPRMR »
MDCNT
MDLOGO .

MDL IST.
MDSMON

HDELET

MOCMNT &

MDCONT.

MDCMT »

MDIMS »
MDSMTW.,.

MDSMTHW,

MDLOGO.
MDONT »

MDCONT .

MDOUIT.
MDELAC.,

MDLOGO

MDSMON«
MDF IND .

MOPRMH ¢

MOLOGO .

MDPRMI

MOSMON

£-y

SORT1 MDADDR,
SORT2

UPDATE MDLOGN.

MBCMT .

MDELAC,

MOF IND.

MDLOGO.

MDPACK.

Appendix B

Common Blocks

VAR
NAME
REAL

INTEG

DBLE
£EQ0s

HOLL
aCTAL
LPAR
RPAR
DOLL AR
AT
PERCNT
COLON
APQOSTR
EQUALS

MINUS

COMMA
UPARRW
BCKSLH

QUESMK

COMMUN /MDCODE/ ALLOCATION

TYPE DIH

I

1

Loc¢
CaDEL])
CabEL2)
CobEL3)

CnDEfy)

caDELlS)

CaDELS)

CnDELy)Y -
CobLE(3)

CaPE(9)

CobE{10)
CabE(1])
CabEL2)
CaoDE(13)
CoDE(14)
CanbE(18)

CnbDE{16)

CalELLT)
CnbE(18)
CoDEfIT)

CobDE(20)

RELADD
0000
p0al
pdg2

n0o3
alo4

nOD%
n0gé
nba7
ctha
oGt
g012
g1 3
0014
o019
nhé

oOi?

020
pt21
n022

g023

DEFINIT]ON

FIELD DESIGNATOR INDICATING
AN ALPHNUMERIC NAME (=]}
FIELD DESIGNATOR INpICATING
A REAL NUMBER (=22]

FIELD DESIGNATOR INDICATING
AN INTEGER NUMBER (=3}
FIELD DESIGNATOR INDICATING
A DOUBLE PRECISION NUMBER

{=x4)

FIELD DESIGNATOR INpICATiNG
THE END OF THE INPUT STATE-
HENT (=5)

FIELD DESIGNATOR INDICATING
A HOLLERITH vakug =&} .
FIELD DESIGNATOR INDICATING
AN COCTAL NUMBER (=7)

FIELD DESIGNATOR INDICATING
A LEFT PARENTHESIS (=3}
FIELD DESIGNATOR [NDICATING
A& RIGHT PARENTHESIS {29}
FIELD DESIGNATOR INpICATING
A DOLLAR Sslon, 5, {x10)
FIELD DESINATOR INDICATING
AN AT SIGN, B, (=11)

FIELLU DESIGNATOR INDICATING
A PER CENT SIGN, %, (=12)
FIELD DESINATOR INDICATING

A COLON,

1y (=13)

FIELD DESIGNATOR INDICATING
AN APOSTOPHE, ', (%14)

FIELD DESTIGNATOR INDICATING
AN EQUALS SjGN, =, {=15)
FIELD DESIGNATOR INDICATING
A MINUS S1GN OR A HYPHEN, =,

(=14}

FIELD DESIGNATOR INDICATING

A COMMA

(=17)

FIELD DFSIGNATOR INDICATING
AN UP=ARROW., A » (=i81}

FIELD DESIGNATOR INpICATiNG
A BACK=SLASH, \, (%19)
FIELD DESIGNATOR INpDICATING
A QUESTION MARK, T (=20)

B-1

EEEEHHFUCBﬂIETY’OF‘THE
ORIGINAL PAGE IS POOR

VaRg
PLUS
ASThSK
LBS1GN

SLASH

2UHS

REPEAT

TYPE piH

i 1

I !

I]

{ l

CODE(25)

I 1

C0DEL3Y)
l !

LUc RELApD
CaDEl2]) pO24
CoPEL22) pG2%
CoCGE{23) gD2é
CnDE(Z24) o027

70 CODE 132,
CabE(33) pGyD

70 CODE(42)

CaoDet{43} pOs2

DEF NITON

FIELD DES!IGNATOK INGICATING
A PLUS SiGN, +, (=2])

FIELL DESIGNLTOR INDICATING
AN ASTERISK, &, {(=22)

FIELD DESIGNATOR INDICATING
A POUND SiGN, #, (223)
FIELD DESIGNATOR INDICATING
A SLASHl Zy (=24

NOT CURKENTLY yUSED

FIELD DESIGNATUR INpDICATING
A SUBSCRIPT FLIELL (233)

NOGT cYRRENTLY USED

FIELD DESIGNATOR INpICATING
A REPEAT GROUP (=243)

vaRp
MDLEN

BDATA

0S1Ze

WeUF

TYPE

I

COMMON /MDBUFF/ ALLOCATION

Dim
1

13

RelalD
o0p0

ool

08g2

DEF INITION

LENGTH (IN WORDS) OF THE
WORKING BUFFER (nwBUF)
SUBSCRIPT (ONE ORIGIN) FROM
BEGINNING OF wORrRKING BUFFER
(WBUF) T0 BEGINNING OF TS
DATA AREA (l.Ee« PORTION 0OF
WBUF WHICH GROWS UP FROM

THE B8QTTOM)

TOTAL NUMBER OF wORpS OF THg
WoRKING BUFFER (wBUF) WHICH
ARE CURRENTLY IN USEs THE
WORKING BUFFER IS PiviIDED
INTO TWO AREAS UF DATA == ONE
AT THE TOpPp AND ONE AT THE
BoTTOM, DSIZE 1S THE TOTAL
S1ZE OF THESE TwO AREAS.

WORDS 4 TO 9 OF /MpBUFF/ ARE NOT USELD

I

MDLgN

0011

WORKING BUFFER OF MpDLEN WORQ3

